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Abstract. We present a new simple proof of Euler’s formulas for ζ(2k), where

k = 1, 2, 3, . . . . The computation is done using only the defining properties
of the Bernoulli polynomials and summing a telescoping series, and the same

method also yields integral formulas for ζ(2k + 1).

1. Introduction

In the mathematical literature, one finds many ways of obtaining the formula

ζ(2k) :=

∞∑
n=1

1

n2k
=

(−1)k−122k−1π2k

(2k)!
B2k, k = 1, 2, 3, . . . , (1)

where Bk is the kth Bernoulli number, a result first published by Euler in 1740. For
example, the recent paper [2] contains quite a complete list of references; among
them, the articles [3, 11, 12, 14] published in this Monthly. The aim of this
paper is to give a new proof of (1) which is simple and elementary, in the sense
that it involves only basic one variable Calculus, the Bernoulli polynomials, and a
telescoping series. As a bonus, it also yields integral formulas for ζ(2k+ 1) and the
harmonic numbers.

1.1. The Bernoulli polynomials—necessary facts. For completeness, we be-
gin by recalling the definition of the Bernoulli polynomials Bk(t) and their basic
properties. There are of course multiple approaches one can take (see [7], which
shows seven ways of defining these polynomials). A frequent starting point is the
generating function

xext

ex − 1
=

∞∑
k=0

Bk(t)
xk

k!
,

from which, by the uniqueness of power series expansions, one can quickly obtain
many of their basic properties. Among these we single out

B0(t) = 1, B′k(t) = kBk−1(t), k ≥ 1, (2)

which shows by induction that Bk(t) is in fact a polynomial, and∫ 1

0

Bk(t) dt = 0, k ≥ 1. (3)
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Alternatively, one can instead use (2) and (3) to define the polynomials Bk(t)
recursively. In any case, one finds that the first few Bernoulli polynomials are

B0(t) = 1, B1(t) = t− 1

2
, B2(t) = t2 − t+

1

6
.

The Bernoulli numbers are defined to be the values Bk = Bk(0). From (2), (3),
and the Fundamental Theorem of Calculus, one sees that Bk(0) = Bk(1) for k ≥ 2,
and from the symmetry relation

Bk(1− t) = (−1)kBk(t), k ≥ 0

(easily proved by induction on k) one deduces

B2k(1) = B2k(0) = B2k, k ≥ 0,

B2k+1(1) = B2k+1(0) = 0, k ≥ 1.
(4)

Of course there are many other properties and relations satisfied by the Bernoulli
polynomials, but those listed above are the only ones necessary for our goal.

1.2. Outline of the proof. Given these basic facts about Bernoulli polynomials,
let us give a sketch of our proof of (1) (the details are in the next section). The
integrals

I∗(k,m) :=

∫ 1

0

B∗2k(t) cos(mπt) dt

where B∗k(t) = Bk(t)−Bk(0), are evaluated via a recurrence formula obtained from
integrating by parts twice. Solving the recurrence and summing over m gives

(−1)k−1(2k)!

22kπ2k
ζ(2k) =

∞∑
m=1

I∗(k, 2m).

The key step in the proof is to apply the elementary trigonometric identities relat-
ing products of sines and cosines to sums to obtain a formula for cos(mx) which
expresses the latter sum as a telescoping series of integrals. Another integration by
parts justifies passage to the limit in these integral representations (showing that
the general term tends to zero) and, together with (3), yields

∞∑
m=1

I∗(k, 2m) =
1

2
B2k,

which gives Euler’s formula.

1.3. Other applications of the ideas of the proof. The same technique, ap-
plied to the odd integer case, gives us the integral expression [1, formula 23.2.17]

ζ(2k + 1) =
(−1)k−122kπ2k+1

(2k + 1)!

∫ 1

0

B2k+1(t) cot
(πt

2

)
dt,

with terms that mimic (1) except for the innocent-looking yet nonetheless com-
pletely mysterious integral, for which there is no known “nice” closed form expres-
sion (e.g., one which could determine the irrationality or even the transcendence of
all values ζ(2k + 1)).

In spite of this state of affairs, there is no lack of formulas for ζ(2k + 1) in the
mathematical literature. There is, for example, an intriguing parametric formula
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due to Ramanujan in which the Bernoulli numbers appear. For positive α, β with
αβ = π2 and k any nonzero integer, we have

α−k

(
1
2ζ(2k + 1) +

∞∑
n=1

n−2k−1

e2αn − 1

)
= (−β)−k

(
1
2ζ(2k + 1) +

∞∑
n=1

n−2k−1

e2βn − 1

)

− 22k
k+1∑
n=0

(−1)n
B2n

(2n)!

B2k+2−2n

(2k + 2− 2n)!
αk+1−nβn,

see [5, Entry 21 (i) on page 275]; in the recent papers [9, 10], this formula has been
analyzed from the standpoint of transcendence. The book [13, Section 4.2] contains
a large collection of other formulas for ζ(2k + 1).

2. Computation of ζ(2k)

2.1. Some auxiliary integrals. Consider the integrals

I(k,m) :=

∫ 1

0

B2k(t) cos(mπt) dt, k ≥ 0, m ≥ 1.

An immediate computation shows that I(0,m) = 0 for m ≥ 1. For k ≥ 1, integrat-
ing by parts twice and applying (2), we get

I(k,m) =
1

mπ

[
B2k(t) sin(mπt)

]t=1

t=0
− 2k

mπ

∫ 1

0

B2k−1(t) sin(mπt) dt

=
2k

m2π2

[
B2k−1(t) cos(mπt)

]t=1

t=0
− 2k(2k − 1)

m2π2
I(k − 1,m),

which gives us both the special case

I(1,m) =

∫ 1

0

(
t2 − t+

1

6

)
cos(mπt) dt =

0, m = 1, 3, 5, . . . ,
2

m2π2
, m = 2, 4, 6, . . .

and, by (4), the recurrence relation

I(k,m) = −2k(2k − 1)

m2π2
I(k − 1,m), k ≥ 2.

From this recurrence one easily obtains the closed form

I(k,m) =

0, m = 1, 3, 5, . . . ,

(−1)k−1(2k)!

m2kπ2k
, m = 2, 4, 6, . . . .

(5)

Now, for reasons which are made clear below, consider B∗k(t) = Bk(t)−Bk(0) =
Bk(t)−Bk, i.e., the Bernoulli polynomial minus its constant term. The correspond-
ing integral

I∗(k,m) :=

∫ 1

0

B∗2k(t) cos(mπt) dt =

∫ 1

0

(B2k(t)−B2k) cos(mπt) dt

is equal to I(k,m), because
∫ 1

0
cos(mπt) dt = 0 for m > 0. For fixed k ≥ 1,

summing (5) over m yields

(−1)k−1(2k)!

22kπ2k
ζ(2k) =

(−1)k−1(2k)!

π2k

∞∑
m=1

1

(2m)2k
=

∞∑
m=1

I∗(k, 2m) =

∞∑
m=1

I∗(k,m).
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2.2. The telescoping trick. We will need the elementary trigonometric identity

cos(mx) =
sin( 2m+1

2 x)− sin( 2m−1
2 x)

2 sin(x2 )
. (6)

With the introduction of (6), we now have a telescoping series, yielding

(−1)k−1(2k)!

22kπ2k
ζ(2k) =

∞∑
m=1

∫ 1

0

B∗2k(t) cos(mπt) dt

= lim
N→∞

N∑
m=1

(∫ 1

0

B∗2k(t)
sin( 2m+1

2 πt)

2 sin(πt2 )
dt−

∫ 1

0

B∗2k(t)
sin( 2m−1

2 πt)

2 sin(πt2 )
dt

)

=

(
lim
N→∞

∫ 1

0

B∗2k(t)
sin( 2N+1

2 πt)

2 sin(πt2 )
dt

)
− 1

2

∫ 1

0

B∗2k(t) dt.

We observe that by (3), the value of the second term is

1

2

∫ 1

0

B∗2k(t) dt =
1

2

∫ 1

0

(B2k(t)−B2k) dt = −B2k

2
.

Now, we show that the limit in the first term is 0. Note that the function

f(t) =
B∗2k(t)

2 sin(πt2 )
, t ∈ (0, 1],

extends by continuity to t = 0 since B∗2k(0) = 0 (this is the reason for subtracting
the constant term), and is differentiable on [0, 1] with a continuous derivative.
Denoting (2N + 1)π/2 by R, integrating by parts gives∫ 1

0

f(t) sin(Rt) dt = −cos(R)

R
f(1) +

1

R
f(0) +

∫ 1

0

f ′(t)
cos(Rt)

R
dt.

The boundedness of f ′(t) shows that each term in the above sum approaches zero
as R→∞, so that indeed the limit tends to 0. Consequently,

(−1)k−1(2k)!

22kπ2k
ζ(2k) =

B2k

2
,

which, after rearranging terms, gives (1).

3. What about ζ(2k + 1)?

The same approach will yield a formula for ζ(2k + 1), but the term which is
subtracted when summing the telescoping series is an integral which, as far as
anyone knows, cannot be evaluated in a simple closed form. We proceed in the
same way as before, except this time, we consider the integrals

J(k,m) :=

∫ 1

0

B2k+1(t) sin(mπt) dt.

Direct computation shows that

J(0,m) =

∫ 1

0

(
t− 1

2

)
sin(mπt) dt = −1 + (−1)m

mπ
=

0, m = 1, 3, 5, . . . ,

− 1

mπ
, m = 2, 4, 6, . . . .
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For k ≥ 1, integrating by parts twice gives, using (2) and (4), the recurrence relation

J(k,m) = − (2k + 1)(2k)

m2π2
J(k − 1,m).

From this recurrence we obtain the closed form

J(k,m) =

0, m = 1, 3, 5, . . . ,

(−1)k−1(2k + 1)!

m2k+1π2k+1
, m = 2, 4, 6, . . . .

(7)

Note that this time, since B2k+1(0) = B2k+1 = 0 for k ≥ 1, subtracting the
constant term is not necessary except for k = 0, since B1 = −1/2, although, since
ζ(1) =∞, this is irrelevant for now (but see the next Remark). Thus, by (7), and
using the trigonometric identity

sin(mx) = −
cos( 2m+1

2 x)− cos( 2m−1
2 x)

2 sin(x2 )
, (8)

we obtain, for k ≥ 1,

(−1)k−1(2k + 1)!

22k+1π2k+1
ζ(2k + 1) =

(−1)k−1(2k + 1)!

π2k+1

∞∑
m=1

1

(2m)2k+1
=

∞∑
m=1

J(k,m)

= −

(
lim
N→∞

∫ 1

0

B2k+1(t)
cos( 2N+1

2 πt)

2 sin(πt2 )
dt

)
+

∫ 1

0

B2k+1(t)
cos(πt2 )

2 sin(πt2 )
dt.

The limit is null, for the same reason as before. Consequently, we have proved
that

ζ(2k + 1) =
(−1)k−122kπ2k+1

(2k + 1)!

∫ 1

0

B2k+1(t) cot
(πt

2

)
dt, k ≥ 1. (9)

It would be nice to know if the integral in (9) has a closed form expression (other
than in terms of ζ(2k + 1) of course!) but at present this problem remains open.

Remark. In the case k = 0, corresponding to the harmonic series
∑∞
m=1 1/m =∞,

we can still obtain information from the integrals J(0,m) if we consider the partial
sums of the telescoping series. The trick is to just use (8) to sum sin(mπx) inside
the integral J(0,m). This leads to the formula

HM = π

∫ 1

0

(
t− 1

2

)
cos
(

4M+1
2 πt

)
− cos

(
πt
2

)
sin
(
πt
2

) dt (10)

where HM =
∑M
m=1 1/m is the Mth harmonic number.

4. Fourier Confidential

Readers familiar with the basic theory of Fourier series will of course immediately
recognize that the integrals I(k, 2m) are the Fourier coefficients of the Bernoulli
polynomial B2k(t). The Fourier series of B2k(t), first computed by Hurwitz in
1890, is

B2k(t) =
(−1)k−1(2k)!

22k−1π2k

∞∑
m=1

cos(2πmt)

m2k
, t ∈ [0, 1), k ≥ 1,

and setting t = 0 yields (1). However, this approach is not as simple or direct, since
it necessitates the basic facts about Fourier series, not the least of which are the
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issue of pointwise convergence and the Riemann-Lebesgue Lemma. Fortunately,
the latter is easily proved for C1 functions via integration by parts (as we have
done above). Pointwise convergence, as shown in [6], can be dealt with using the
“telescoping trick” (6), from which we can see the Fourier coefficients as differences
of integrals involving the Dirichlet kernels sin((2n+ 1)πt)/ sin(πt).

The use of the same “telescope” (6) in [4] brought to our attention that this
idea, used there to compute only ζ(2) via the integral

∫ π
0
x cos(mx) dx, could also

be used to compute ζ(2k). The crucial fact is realizing that, instead of powers, the
natural functions to integrate against the cosine are the Bernoulli polynomials.

The integral for ζ(2k+1) in (9) is also known within the context of Fourier Anal-
ysis (see [8]). It corresponds to the conjugate function of the Bernoulli polynomial
B2k+1(t) evaluated at the origin.
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