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Abstract. We analyze the asymptotic behavior of the Apostol-Bernoulli
polynomials Bn(x;λ) in detail. The starting point is their Fourier series
on [0, 1] which, it is shown, remains valid as an asymptotic expansion
over compact subsets of the complex plane. This is used to determine
explicit estimates on the constants in the approximation, and also to
analyze oscillatory phenomena which arise in certain cases.

These results are transferred to the Apostol-Euler polynomials En(x;λ)
via a simple relation linking them to the Apostol-Bernoulli polynomials.

1. Introduction

The family of Apostol-Bernoulli polynomials Bn(x;λ) in the variable x
and parameter λ ∈ C were introduced by Apostol in [1], where they are
defined by means of the power series expansion at 0 of the meromorphic
generating function

(1) g(x, λ, z)
def
=

zexz

λez − 1
=

∞∑
n=0

Bn(x;λ)
zn

n!
.

The set S of poles of g is {2πin − log λ : n ∈ Z} when λ 6= 1 and {2πin :
n ∈ Z, n 6= 0} when λ = 1, due to the fact that 0 is a removable singularity
in the latter case. Here and throughout this paper, log is the principal
branch of the logarithm; namely, for λ 6= 0, log λ = log |λ| + i arg λ, with
−π < arg λ ≤ π; in particular log 1 = 0. This change in the set of poles
is reflected in various discontinuities as λ → 1; for example, the radius of
convergence of the series in (1) is 2π when λ = 1 and | log λ| when λ 6= 1.

The value λ = 1 corresponds to the classical Bernoulli polynomials, i.e.
Bn(x; 1) = Bn(x), but it is certainly not the case thatBn(x) = limλ→1 Bn(x;λ).
There is a limiting relationship between Bn(x;λ) and Bn(x) as λ → 1, but
it is not immediately obvious. Another aspect of this discontinuity is that,
although Bn(x) is monic of degree n, for λ 6= 1 the degree of Bn(x;λ) is
n− 1 and its leading term is n/(λ− 1).

We follow the convention of denoting Bn(λ) = Bn(0;λ); these are the
Apostol-Bernoulli numbers. In fact, Bn(λ) is a rational function in λ with
denominator (λ−1)n+1 and coefficients related to the Stirling numbers. The
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classical Bernoulli numbers are given by Bn = Bn(1). The above remarks
concerning the discontinuity at λ = 1 also apply here.

The case λ = 0 is trivial; indeed B0(x; 0) = 0 and Bn(x; 0) = −nxn−1 for
n ≥ 1. In particular B1(0) = −1 and Bn(0) = 0 for n 6= 1. For this reason
we will assume λ 6= 0 in what follows.

Dilcher showed in [3], using properties of the Riemann zeta function, that
the Bernoulli polynomials satisfy

(2)

lim
n→∞

(−1)n−1(2π)2n

2(2n)!
B2n(z) = cos(2πz),

lim
n→∞

(−1)n−1(2π)2n+1

2(2n+ 1)!
B2n+1(z) = sin(2πz),

uniformly on compact subsets of C. In addition, the difference between the
nth term and its limit is found to be of the order O(2−n), with the implicit
constant depending exponentially on |z|. The authors showed in [5] how
these facts also follow easily, at least on [0, 1], from the Fourier expansion of
the Bernoulli polynomials, including the quantitative bounds for the differ-
ences, and also precise estimates on the rate of convergence, namely bounds
for the successive quotients of these differences.

The purpose of this article is to obtain analogous asymptotic estimates
for Bn(z;λ), valid for any z ∈ C. In short, the central result of this paper
is that the Fourier series (4) of Bn(x;λ) for x ∈ [0, 1], which a priori repre-
sents it only on this interval, is actually valid on the entire complex plane as
an asymptotic series representing Bn(z;λ) for z ∈ C. From this we deduce
explicit asymptotic estimates for the Apostol-Bernoulli polynomials which
include the pattern mentioned above, namely, geometric order of decrease
for the differences between Bn(z;λ) and its asymptotic approximations, with
implicit constants that are exponential in |z|, as well as estimates for suc-
cesive quotients of these differences. The behavior of the approximations
varies considerably depending on λ, with λ = 1, studied in [5], turning out
to be the exception rather than the rule.

Many authors, beginning with Apostol in the foundational paper [1], use
transcendental methods when studying the Apostol-Bernoulli polynomials,
due to their relation with the Lerch transcendent Φ, defined by analytic
continuation of the series

Φ(λ, s, a) =

∞∑
k=0

λk

(k + a)s
,

where a 6= 0,−1,−2, . . . and either |λ| < 1, s ∈ C or |λ| = 1,Re s > 1
guarantees convergence (we use λ as a variable in order to maintain a unified
notation). One has

(3) Bn(a;λ) = −nΦ(λ, 1− n, a)

on various domains of analytic continuation, and this relation is often ex-
ploited to obtain identities satisfied by Bn as special cases of identities satis-
fied by Φ. The Fourier series of Bn(x;λ) is an instance of this (see Section 2).

While certainly not denying the great merit of this approach, it can be
overkill, adding unnecessary effort to the study of what is, after all, a poly-
nomial family. In this paper we wish to bring to light that the algebraic
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properties of the Apostol-Bernoulli polynomials and basic Fourier analysis
can get us equally far in describing their asymptotic behavior. We feel this
is interesting in its own right, more so as the algebraic properties involved
are precisely those of the so-called “umbral” variety and hence the method
probably works in a wider context. For instance, this point of view yields
an overlooked elementary proof of the Fourier expansion (4) itself.

The same methods used to study the Apostol-Bernoulli polynomials may
also be applied to the Apostol-Euler polynomials En(x;λ) introduced by Luo
and Srivastava (see [6, 8]). In Section 8, using a relation which apparently
has not been previously remarked on in the literature (see Lemma 2), we
will show that the analogous results for En are consequences of those for Bn;
hence we concentrate on the latter and summarize the results for the former.

2. The Fourier series of Bn(x;λ)

In [7, Theorem 2.1, p. 3], it is proved that the Fourier series of Bn(x;λ)
for any λ ∈ C with λ 6= 0 is

(4) Bn(x;λ) = −δn(x;λ)− n!

λx

∑
k∈Z\{0}

e2πikx

(2πik − log λ)n
,

where δn(x;λ) = 0 or (−1)nn!
λx logn λ according as λ = 1 or λ 6= 1. This expansion

is valid for 0 ≤ x ≤ 1 when n ≥ 2 and for 0 < x < 1 when n = 1. It yields
the Fourier series of the Bernoulli polynomials, due to Hurwitz (1890), as
the special case λ = 1.

The expansion (4) is proved from scratch in [7] starting from the gen-
erating function (1) and applying the Lipschitz summation formula (which
can be derived in turn from the Poisson summation formula). It may also
be obtained immediately via the relation (3) to the Lerch transcendent by
specializing the following series expansion for Φ, that can be found in [4,
formula 1.11 (6), p. 28]:

(5) Φ(λ, s, x) = λ−xΓ(1− s)
∑
k∈Z

(2πik − log λ)s−1e2πikx,

for 0 < x ≤ 1, Re s < 0, λ /∈ (−∞, 0].
As we have mentioned in the introduction, our approach does not require

the use of the Lerch transcendent. In this vein, we present an elementary
proof of (4), using only the algebraic properties of the Apostol-Bernoulli
polynomials and the real Riemann integral. The main ingredient is the fact
that {Bn(x;λ)} is an Appell sequence for fixed λ; namely, it satisfies the
derivative relation

(6) B′n(x;λ) = nBn−1(x;λ),

as can be easily deduced from the form of the generating function (1). One
merely needs to observe that (4) is equivalent to finding the Fourier coeffi-
cients of x 7→ λxBn(x;λ) for fixed λ.

Proposition 1. For any λ ∈ C, λ 6= 0, 1, k ∈ Z and n ∈ N, we have

(7)

∫ 1

0
λxBn(x;λ)e−2πikxdx = − n!

(2πik − log λ)n
.
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Proof. Fixing k, we use induction on n. One easily checks the case n = 1,
noting that B1(x;λ) = 1/(λ− 1). Let n ≥ 2. Assuming (7) is true for n− 1,
integrate it by parts, using the derivative formula (6) to obtain∫ 1

0
λxBn(x;λ)e−2πikxdx = λBn(1;λ)− Bn(0;λ)− n!

(2πik − log λ)n
.

The proof is concluded by checking that λBn(1;λ) = Bn(0;λ) for n ≥ 2.
This follows from (1) noting that λg(1, λ, z) − g(0, λ, z) = z (see also [1,
formula 3.5, p. 165]). �

Remark 1. By uniqueness of the Fourier series, (7) could be used to define
the Apostol-Bernoulli polynomials, instead of using the generating func-
tion (1). Indeed, it is not hard to work “backwards” to deduce (1) from
(7) and also to prove the basic algebraic and differential properties satisfied
by the family directly from the Fourier series, thus providing an alternative
approach to the theory. This applies also in particular to the Bernoulli and
Euler polynomials.

For our purposes, it is useful to rewrite (4) in the alternative form

(8)
1

n!
Bn(x;λ) = −

∑
a∈S

eax

an
,

where S is the set of poles of the generating function g(x, λ, z), namely

(9) S = {ak : k ∈ Z}, ak = 2πik − log λ, Z =

{
Z if λ 6= 1,

Z \ {0} if λ = 1.

Note that the derivative relation (6) is immediate from (8) by differentiating
term by term.

This representation also suggests a proof of (8) from (1) via the calculus

of residues. Indeed, a−neax = Res(z−(n+1)g(x, λ, z), a) for a ∈ S. The
left hand side of (8) is by definition the coefficient of zn in the power series

expansion of g around 0, so it is equal to Res(z−(n+1)g(x, λ, z), 0). Hence (8)

is equivalent to
∑

a∈C Res(z−(n+1)g(x, λ, z), a) = 0, which can be proved by

showing that the integral
∮
CN

z−(n+1)g(x, λ, z) dz tends to 0 over a suitable

increasing sequence of circles CN .
This is essentially the proof in [4, Section 1.11] of the Fourier expansion

of the Lerch transcendent (5). The recent paper [2] applies this method to
obtain the Fourier series of the Apostol-Bernoulli, Apostol-Euler, and also
the Apostol-Genocchi polynomials. Even though it uses no more than basic
complex analysis, all things considered, after filling in all the details (for
example, the case n = 1 must be estimated separately from n ≥ 2), the
proof of Proposition 1 given above is simpler. Nevertheless, the form (8)
of the Fourier expansion is particularly well-suited for studying asymptotic
approximations to Bn(z;λ).

3. Approximations to Bn(λ)

To obtain approximation results from (8) we need to order the set of poles
S of the generating function (1) by order of magnitude.

Lemma 1. Let ak = 2πik − log λ with k ∈ Z, λ ∈ C, λ 6= 0.
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(a) If Imλ > 0, then for k ≥ 1, we have

0 < |a0| < |a1| < |a−1| < · · · < |ak| < |a−k| < · · ·
(b) If Imλ < 0, then for k ≥ 1, we have

0 < |a0| < |a−1| < |a1| < · · · < |a−k| < |ak| < · · ·
(c) If λ > 0, then for k ≥ 1, we have

|a0| < |a1| = |a−1| < · · · < |ak| = |a−k| < · · ·
(note that a0 = 0 if and only if λ = 1, in which case it is not a pole,
hence is excluded in this chain).

(d) If λ < 0, then for k ≥ 0, we have

0 < |a0| = |a1| < |a−1| = |a2| < · · · < |a−k| = |ak+1| < · · ·
In addition, |ak| ≥ 2π(|k| − 1

2) if |k| ≥ 1.

Proof. Let ξ = log λ
2πi so that ak = 2πi(k − ξ). Since we use the principal

branch of the logarithm, this maps λ ∈ C \ {0} to the strip −1
2 < Re ξ ≤ 1

2 ,

with λ > 0 corresponding to Re ξ = 0 and λ < 0 to Re ξ = 1
2 . Since

|ak| = 2π|k−ξ|, the above chains are readily verified by considering |x−ξ|2 =
(x − Re ξ)2 + (Im ξ)2 for real x. For k ∈ Z, |k| ≥ 1, we have |k − ξ| ≥
|k − Re ξ| ≥ |k| − 1

2 and hence |ak| ≥ 2π(|k| − 1
2). �

By definition, in an asymptotic expansion, the n + 1st term should be
infinitesimal with respect to the nth term. Thus we have to consider par-
tial sums of the Fourier series along the chains detailed in Lemma 1 which
truncate the chain at a link where there is strict inequality. In other words,
we consider only those finite subsets of poles F ⊆ S satisfying

max{|a| : a ∈ F} < min{|a| : a ∈ S \ F} def
= µ.

Saying that (8) gives an asymptotic expansion means that the remaining
tail is of the order of µ−n.

Let us establish some notation. As in (9), we let Z = Z if λ 6= 1 and
Z = Z \ {0} if λ = 1. Letting ak = 2πik − log λ, we define

(10)

Zm = {k ∈ Z : |k| ≤ m}, Fm = {ak : k ∈ Zm},
Z+
m = {k ∈ Z : |k| ≤ m} ∪ {m+ 1}, F+

m = {ak : k ∈ Z+
m},

Z−m = {k ∈ Z : |k| ≤ m} ∪ {−(m+ 1)}, F−m = {ak : k ∈ Z−m}
for an integer m ≥ 0, noting that for λ = 1, Z0 is empty. In accordance
with Lemma 1, we have the following possible choices for F , along with the
corresponding value(s) of µ = min{|a| : a ∈ S \ F}:
(11)

F =


Fm, F

+
m ,

Fm, F
−
m ,

Fm,

F+
m ,

µ =


|am+1|, |a−(m+1)|, if Imλ > 0,

|a−(m+1)|, |am+1|, if Imλ < 0,

|am+1|, if λ > 0 (m > 0 if λ = 1),

|a−(m+1)|, if λ < 0.

Note that µ = |a±(m+1)| ≥ 2π(m+ 1
2) ≥ π in each of these cases.

We begin our study of (8) by proving that it gives an asymptotic expan-
sion for the Apostol-Bernoulli numbers Bn(0;λ) = Bn(λ).
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Proposition 2. Given λ ∈ C, λ 6= 0, let F be a finite subset of the set of
poles S of the generating function (1) of Bn(x;λ) satisfying

max{|a| : a ∈ F} < min{|a| : a ∈ S \ F} = µ.

For all integers n ≥ 2, we have

(12)
Bn(λ)

n!
= −

∑
a∈F

1

an
+O(µ−n),

where the constant implicit in the order term depends only on λ and F .

In this sense then, using the appropriate approximating sums over the sets
F , the Fourier series (8) of Bn(x;λ) at x = 0 is an asymptotic expansion for
the Apostol-Bernoulli numbers as n→∞.

Proof. Relabel the set of poles in increasing order of magnitude as |α0| ≤
|α1| ≤ · · · ≤ |αM | ≤ · · · . The estimate |ak| ≥ 2π(|k| − 1

2) from Lemma 1

shows that
∑

k α
−n
k is absolutely convergent for n ≥ 2. For any M ≥ 0, we

have
∞∑

k=M+1

1

|αk|n
=

1

|αM+1|n
∞∑

k=M+1

∣∣∣∣αM+1

αk

∣∣∣∣n
≤ 1

|αM+1|n
∞∑

k=M+1

∣∣∣∣αM+1

αk

∣∣∣∣2 =
cM,λ

|αM+1|n
,

where cM,λ is a constant depending only on M and λ. This applies to any
tail, in particular to the tail S \ F . �

Remark 2. We can say more about the constant in the above proof by
considering the Hurwitz zeta function for real values of the parameters. For
example, for F = Fm = {k ∈ Z : |k| ≤ m} (excluding 0 if λ = 1) and
Imλ > 0, for which the next pole in order of magnitude is |am+1|, if we

denote the constant by cm,λ and let ξ = log λ
2πi , we have, by Lemma 1,

cm,λ = |αm+1|2
∞∑

|k|≥m+1

1

|ak|2
= |m+ 1− ξ|2

∞∑
|k|≥m+1

1

|k − ξ|2

≤ |m+ 1− ξ|2
∞∑

|k|≥m+1

1(
|k| − 1

2

)2 = 2|m+ 1− ξ|2ζ(2,m+ 1
2).

Simply comparing the sum ζ(σ, q) =
∑∞

k=0(k + q)−σ for σ > 1, q > 0 with
the corresponding integral yields

ζ(σ, q) <

(
1 +

q

σ − 1

)
q−σ,

which applied to the above estimate for cm,λ gives

cm,λ ≤ 2|m+ 1− ξ|2
(

1 +
m+ 1

2

n− 1

)
1(

m+ 1
2

)2 .
Since limm→∞(m+1−ξ)/(m+ 1

2) = 1, this shows that for fixed m and n� 0,
cm,λ is bounded independent of m and we can then replace it with a constant
cλ depending only on λ. Thus the tail can be estimated by cλ|am+1|−n for
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fixed m and n � 0. In general, for any n ≥ 2, we still have an estimate
of the form cλ|m + 1 − ξ| and hence the tail can always be estimated by

cλ|am+1|−(n−1).

4. Approximations to Bn(z;λ) on the complex plane

We now come to the central result of this paper, that the Fourier series
(8) of Bn(x;λ) for x ∈ [0, 1] extends to the complex plane as an asymptotic
expansion for Bn(z;λ) given z ∈ C. We state this in a more precise form,
since we also obtain information on the implicit constants in the asymptotic
approximation.

Theorem 3. Given λ ∈ C, λ 6= 0, let F be a finite subset of the set of poles
S of the generating function (1) of Bn(x;λ) satisfying

max{|a| : a ∈ F} < min{|a| : a ∈ S \ F} def
= µ.

For all integers n ≥ 2, we have, uniformly for z in a compact subset K of C,

(13)
Bn(z;λ)

n!
= −

∑
a∈F

eaz

an
+O

(
eµ|z|

µn

)
,

where the constant implicit in the order term depends on λ, F and K.
In fact, for n � 0, the order constant may be taken equal to the value

of the constant for the Apostol-Bernoulli numbers, corresponding to z = 0,
thus eliminating its dependence on K (how large n has to be of course still
depends on the compact set K).

Proof. We will use Proposition 2, which is the case z = 0, and the “binomial
formula”

(14) Bn(x+ y;λ) =
n∑
k=0

(
n

k

)
Bn−k(x;λ) yk

which may be proved directly from the generating function (1) or from the
derivative relation (6). It is well-known that for a given polynomial family,
in fact (14) is equivalent to (6) (for fixed x, (14) is the Taylor expansion of
Bn(x + y;λ) in powers of y). Both serve to define the notion of an Appell
sequence. For z ∈ C, writing z = z + 0, (14) and Proposition 2 yield

Bn(z;λ)

n!
=

n∑
k=0

Bn−k(λ)

(n− k)!

zk

k!
=

n∑
k=0

(
−
∑
a∈F

1

an−k
+O(µ−n+k)

)
zk

k!

= −
∑
a∈F

n∑
k=0

1

an−k
zk

k!
+

n∑
k=0

O(µ−n+k)
zk

k!
,

where the implicit constant c is that corresponding to z = 0 and only de-
pends on F, λ. Now, consider the partial sums and tails of the exponential
series,

en(w) =
n∑
k=0

wk

k!
, e∗n(w) = ew − en(w) =

∞∑
k=n+1

wk

k!
.
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The first summand above is

−
∑
a∈F

en(az)

an
= −

∑
a∈F

eaz

an
+
∑
a∈F

e∗n(az)

an
.

To prove the theorem, we need to show that the resulting extra terms have
the correct order of magnitude. Indeed,∣∣∣∣∣

n∑
k=0

O(µ−n+k)
zk

k!

∣∣∣∣∣ ≤ c
n∑
k=0

µ−n+k |z|k

k!
= cµ−n

n∑
k=0

(µ|z)|k

k!
≤ cµ−neµ|z|.

The tails of the exponential series may be estimated using the complex
version of the Lagrange remainder for Taylor series (which is actually an
upper bound for the modulus rather than an equality as in the real case):

|e∗n(w)| ≤ eRe+(w) |w|n+1

(n+ 1)!
, Re+(w) = max{Re(w), 0}.

Since |a| < µ for all a ∈ F , we have∣∣∣∣e∗n(az)

an

∣∣∣∣ ≤ |a|e|az| |z|n+1

(n+ 1)!
< µeµ|z|

|z|n+1

(n+ 1)!

so that ∣∣∣∣∣∑
a∈F

e∗n(az)

an

∣∣∣∣∣ ≤ #Fµeµ|z|
|z|n+1

(n+ 1)!

(here #F denotes the number of elements in F ) and the latter term is less

than ceµ|z|µ−n when

#F
(µ|z|)n+1

(n+ 1)!
< c,

a condition which certainly holds for n � 0, uniformly for z in a compact
subset K ⊆ C. In general, since this sequence is bounded, for any n ≥ 2 we
obtain a constant independent of n, depending on λ, F,K. �

Remark 3. Since the point is that we get an asymptotic series in n, the eµ|z|

term could be absorbed into the constant in the order term, but doing this
hides the numerical behavior of the approximation. Indeed, it is quickly
apparent in computation that, even for rather small values of |z|, the rapid
growth of this factor offsets the action of µ−n until n is quite large.

Example 1 (Bernoulli polynomials). As a special case of the theorem, we
derive Dilcher’s results in [3] for the approximation of Bernoulli polynomials.

Corollary 4. The Bernoulli polynomials satisfy, uniformly on a compact
subset K of C, the estimates

(15)

(−1)n−1(2π)2n

2(2n)!
B2n(z) = cos(2πz) +O

(
e4π|z|

2n

)
,

(−1)n−1(2π)2n+1

2(2n+ 1)!
B2n+1(z) = sin(2πz) +O

(
e4π|z|

2n

)
,

where the implicit constant depends on K. Moreover, for n � 0 this con-
stant can be made independent of K, equal to the constant for the Bernoulli
numbers, corresponding to the case z = 0.
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Proof. The Bernoulli case corresponds to λ = 1, where ξ = log λ
2πi = 0 and

the set of poles is S = {2πik : k ∈ Z, k 6= 0}. Hence Theorem 3, after
multiplying by (2πi)n, states that

(16)
(2πi)nBn(z)

n!
= −

∑
0<|k|≤m

e2πikz

kn
+O

(
e2π(m+1)|z|

(m+ 1)n

)
.

The result stated above is the case m = 1. �

5. Asymptotic behavior of Bn(z;λ)

From now on, assume λ 6= 1. Then the pole set S = {ak = 2πik − log λ :
k ∈ Z} contains a0 = − log λ and hence the series (13) begins with the term
−ea0za−n0 = (−1)n−1λ−z logn λ. It makes sense to normalize the series by
considering the modified expression

(17) βn(z;λ) = (−1)n−1 logn λ

n!
λzBn(z;λ).

Now (4) becomes

(18) βn(x;λ) =
∑
k∈Z

e2πikx

(1− Λk)n
, x ∈ [0, 1], Λ =

2πi

log λ
.

It is straightforward to check that the transformation Λ = 2πi
log λ maps the

region C \ ((−∞, 0] ∪ {1}) to the region {Λ ∈ C : |Λ − 1| > 1, |Λ + 1| > 1}
which is the exterior of the “figure eight” formed by the union of the two
closed disks |Λ ± 1| ≤ 1, tangent at 0. The negative real axis (−∞, 0) is
mapped to the circumference |Λ − 1| = 1 minus Λ = 0. Since |1 − kΛ| =

|1 − kξ−1| = |ξ−1||k − ξ|, where ξ = log λ
2πi , the ordering of the terms is the

same as in Lemma 1.
The asymptotic approximation (13) changes accordingly.

Proposition 5. Let λ ∈ C, λ 6= 0, 1. For any integer m ≥ 0 we have, for z
in a compact subset K of C,
(19)

(−1)n−1 logn λ

n!
λzBn(z;λ) =

∑
k∈Im

e2πikz(
1− 2πik

log λ

)n +O

(
e(2| log λ|+2π(m+1))|z|∣∣∣1± 2πi(m+1)

log λ

∣∣∣n
)
.

The constant implicit in the order term depends on λ,m and K. For n� 0
it can be taken equal to the constant for the case z = 0, thus making it
independent of K. Here Im = Zm or Z±m are as in (10), with the signs
chosen according to (11).

Proof. It is straightforward to check that the general term in the sum changes
to the expression above, and the order term gets multiplied by |λz logn λ|.
Estimating |λz| ≤ e|z log λ| and µ = |a±(m+1)| ≤ 2π(m+ 1) + | log λ| gives the
order term. �

Remark 4. If we don’t incorporate the term λz into the definition (17) of βn
above, we can drop the “2” from | log λ| inside the O term.
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Corollary 6. For λ ∈ C, λ 6= 0, 1 and λ /∈ (−∞, 0), we have, for z in a
compact subset K of C,

(−1)n−1 logn λ

n!
λzBn(z;λ) = 1 +O

 e(2| log λ|+2π)|z|

min
∣∣∣1± 2πi

log λ

∣∣∣n
 .

The constant implicit in the order term depends on λ and K. However, for
n� 0 it can be taken equal to the constant when z = 0. In particular

lim
n→∞

(−1)n−1 logn λ

n!
Bn(z;λ) = λ−z

uniformly on compact subsets of C.

Proof. This is the case m = 0 above, with the choice of I0 = Z0 = {0}. �

6. Oscillatory phenomena

When λ ∈ R, λ 6= 0, Lemma 1 shows that there are poles of equal modulus,
which must be grouped in pairs in the asymptotic approximation. These
pairs are indexed differently depending on the sign of λ, but their behavior
turns out to be the same. For λ > 0, equal moduli poles correspond to pairs
of integers ±k with k ≥ 1, and are conjugate:

ak = 2πik − log λ, a−k = −2πik − log λ = ak.

Writing the poles in polar form, ak = ρke
2πiαk with ρk = |ak| > 0 and

αk ∈ [0, 1], this pair contributes to the asymptotic expansion (13) with

eakz

ank
+
eakz

ak
n = λ−zρ−nk

(
e2πikze−2πinαk + e−2πikze2πinαk

)
.

This simplifies to

(20) 2λ−zρ−nk cos(2π(kz − nαk)).

Similarly, for λ < 0, equal moduli poles correspond to pairs of integers
{−k, k + 1} with k ≥ 0. It is easy to see that these are also conjugate:

a−k = −2πik − log λ = −(2k + 1)πi− log(−λ),

ak+1 = 2πi(k + 1)− log λ = (2k + 1)πi− log(−λ)

and hence, now writing ak+1 = ρke
2πiαk with ρk = |ak+1| > 0 and αk ∈

[0, 1], the same reasoning shows that this pair contributes to the asymptotic
expansion with

(21) 2(−λ)−zρ−nk cos(π((2k + 1)z − 2nαk)).

These terms cannot vanish unless z ∈ R, in which case we will write z = x.
When this is the case, having fixed k and x, the way that the expressions in
(20) and (21) vary with n depends on the behavior of the sequences kx−nαk
and (2k + 1)x− 2nαk modulo 1, or equivalently, their fractional parts.

The study of the fractional parts of β − nα where α, β ∈ R are fixed and
n varies is the problem of real inhomogeneous Diophantine approximation.
This is a difficult problem with an extensive literature and important ram-
ifications. Its origins lie in Kronecker’s Theorem, which states that if α is
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irrational, the fractional parts are dense in [0, 1]. In fact, they are equidis-
tributed modulo 1. Of course if α is rational, the sequence is periodic of
period the denominator of α.

As far as we are concerned, then, such oscillatory terms may be considered
“chaotic” unless αk is rational, which corresponds to the quotient of the
conjugate pair of poles ak, ak being a root of unity.

The simplest appearance of an oscillatory term occurs in the “0th order”
case of (13) for λ ∈ (−∞, 0).

Proposition 7. Let λ < 0. Then as n → ∞, for z in a compact subset K
of C,

(−1)n−1 logn λ

n!
λzBn(z;λ) = 1+

(
log |λ|+ πi

log |λ| − πi

)n
e2πiz+O

e2(π+| log λ|)|z|∣∣∣1 + 2πi
log λ

∣∣∣n
 .

The constant implicit in the order term depends only on λ and K. Moreover,
for n � 0 it may be taken equal to the corresponding constant for z = 0,
thus making it independent of K.

The part of the approximating terms in parentheses has modulus 1, hence
is periodic or dense in the unit circle according as its argument is a rational
or irrational multiple of 2π. In particular,

lim
n→∞

(
(−1)n−1 logn λ

n!
λzBn(z;λ)−

(
log |λ|+ πi

log |λ| − πi

)n
e2πiz

)
= 1

uniformly on compact subsets of C.

Example 2. It is easy to check that when λ < 0, periodic behavior occurs in

the 0th order approximation if and only if λ = −eπ cot πk
d for integers d ≥ 1

and k. A special case is λ = −1, where we obtain, after simplifying,

(22)

(−1)n−1π2n

2(2n)!
B2n(z;−1) = cosπz +O

(
e3π|z|

32n

)
,

(−1)n−1π2n+1

2(2n+ 1)!
B2n+1(z;−1) = sinπz +O

(
e3π|z|

32n+1

)
.

These approximations are essentially those of the Euler polynomials (see
Section 8).

Remark 5. An interesting question related to oscillatory behavior is whether
we can have repeated instances of “good”, i.e., periodic, behavior. In other
words, can we have different pairs of conjugate poles whose quotients are
roots of unity? When λ > 0, considering the Möbius transformation M(z) =
1+iz
1−iz , which satisfies M(tan z) = e2iz, we have, for k ≥ 1,

ak
a−k

=
1− i 2πk

log λ

1 + i 2πk
log λ

= M
(
− 2πk

log λ

)
= e−2πiθk ⇐⇒ 2πk

log λ
= tanπθk,

and hence the quotient is a root of unity if and only if 2πk
log λ = tanπθk

with θk ∈ Q satisfying 0 < |θk| < 1
2 (this expression cannot be zero). The
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situation for λ < 0 is similar, resulting in

(2k + 1)π

log(−λ)
= tanπθk, θk ∈ Q, 0 < |θk| < 1

2 .

If this happens for two different pairs, corresponding to k, l ≥ 1, say, then

tanπθk
tanπθl

=
k

l
,
2k + 1

2l + 1
, θk, θl ∈ Q, 0 < |θk|, |θl| < 1

2 ,

respectively according as λ > 0 or λ < 0. Without loss of generality one may
assume both θk, θl > 0. For example, tan π

3 / tan π
6 = 3 so there is a solution

pair (k, 3k) for λ = e2πk
√

3. However, the ratio k/l = 2 is impossible, as can
be seen by considering cyclotomic polynomials. What happens in general?

A similar phenomenon was studied by the authors for Bernoulli polyno-
mials in [5], namely, when the first conjugate term in the Fourier series fails
to provide information because it vanishes, one turns to the next, which in
that case cannot vanish simultaneously with the first.

7. Successive quotients

Proposition 8. Let λ /∈ (0,+∞) and βn(z;λ) as in (17). Then βn(z;λ) 6= 1
for n � 0 and if we denote by ε = ±1 the sign of Imλ when λ /∈ R, and
ε = 1 when λ ∈ (−∞, 0), then we have

βn+1(z;λ)− 1

βn(z;λ)− 1
=

1

1− ε 2πi
log λ

+O

(∣∣∣∣∣1− ε
2πi

log λ

1 + ε 2πi
log λ

∣∣∣∣∣
n)

, n→∞,

uniformly for z in a compact subset of C. In particular

lim
n

βn+1(z;λ)− 1

βn(z;λ)− 1
=

1

1− ε 2πi
log λ

uniformly on compact subsets of C.

Proof. If λ /∈ R we may assume without loss of generality that Imλ > 0, so
that ε = 1. Applying Proposition 5 with index set I = Z+

0 = {0, 1}, we have

βn(z;λ) = 1 +
e2πiz

(1− Λ)n
+O(|1 + Λ|−n)

where Λ = 2πi
log λ and for simplicity we have subsumed the exponential in |z|

into the order term. Therefore

βn(z;λ)− 1 =
1

(1− Λ)n

(
e2πiz +O

(∣∣∣∣1− Λ

1 + Λ

∣∣∣∣n)) .
Since |1−Λ| < |1 + Λ| the e2πiz term dominates for n� 0, hence βn(z;λ)−
1 6= 0 for n� 0. Division of the approximations for n and n+ 1 then yields
the result.

By Lemma 1 and (11), for λ ∈ (−∞, 0) we have the same situation, since
I = Z+

0 is also a suitable index set. In this case, we have |1 − Λ| = 1 <
|1 + Λ|. �
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Remark 6. Compare this result with Corollary 6, which shows that βn(z;λ)−
1 tends to 0 uniformly on compact subsets of C for λ /∈ (−∞, 0). As we saw
in Proposition 7, for λ < 0, the difference βn(z;λ) − 1 oscillates, yet by
Proposition 8, its successive quotients approach a limit.

When λ ∈ R+, we cannot use Z+
0 but rather Z1 = {0, 1,−1} as index set.

This brings into play the oscillatory phenomena mentioned in Section 6,
which prevent us from obtaining an analogous clean result. However, we
can still deduce some bounds from (20), or rather a slight modification after
normalizing.

Proposition 9. Let βn be as in (17). Let λ ∈ (0,∞), λ 6= 1, Λ = 2πi/ log λ
and ρ = |1 − Λ| = |1 + Λ|, µ = |1 − 2Λ|, so that 1 < ρ < µ. Let η = ρµ−1,
so 0 < η < 1. Then there is a constant c > 0 independent of n such that
(23)

ρ−1| tanh(2π Im z)| − cηn ≤
∣∣∣∣βn+1(z;λ)− 1

βn(z;λ)− 1

∣∣∣∣ ≤ ρ−1| coth(2π Im z)|+ cηn.

The estimate holds uniformly in n for z in compact subsets of C \ R.

Proof. Let |1 − Λ| = |1 + Λ| = ρ, and µ = |1 − 2Λ|. By Lemma 1, we have
1 < ρ < µ. Now write 1 − Λ = ρe2πiα with α ∈ [0, 1]. Then as in (20), we
have

βn(z;λ)− 1 = 2ρ−n cos 2π(z − nα) +O(µ−n)

= 2ρ−n
(
cos 2π(z − nα) +O(ηn)

)
.

In general, if z = x + iy with x, y ∈ R, then | cos z|2 = cos2 x + sinh2 y. In
our case, | cos 2π(z−nα)|2 = cos2 2π(x−nα) + sinh2 2πy. From the remarks
made in Section 6, unless α is rational, we have no control over the term
cos 2π(x−nα), which will be dense in [−1, 1]. However, if z /∈ R then at least
we have a nontrivial lower bound | cos 2π(z − nα)| ≥ | sinh 2πy| > 0, which
eventually dominates the O((ρµ−1)n) term. Combining this with the upper
bound | cos 2π(z − nα)| ≤ cosh 2πy and forming the successive quotients
gives the result. �

The bounds (23) are sharp. They correspond to the cases when x−nα ≡
0, 1

4 ,
3
4 modulo 1, where α is defined by ω = 1−Λ

|1−Λ| = e2πiα. When α /∈ Q
the sequence x − nα will come arbitrarily close modulo 1 to these values
infinitely often.

If we have z = x ∈ R then the cosine term in the approximation βn(x;λ)−
1 = 2ρ−n(cos 2π(x − nα) + O(ηn)) will oscillate densely in [−1, 1] unless α
is rational. In particular it does not dominate the order term and nothing
guarantees that βn(x;λ)− 1 is nonzero. Numerical examples where it does
vanish are easy to find.

This leaves us with the case z = x ∈ R where α is rational. Equivalently,
ω = 1−Λ

|1−Λ| = e2πiα is a root of unity. Here one can prove the following result.

Proposition 10. Let βn be as in (17). Let λ ∈ (0,∞), λ 6= 1, Λ =
2πi/ log λ, ρ = |1 − Λ| = |1 + Λ|, and µ = |1 − 2Λ|, so that 1 < ρ < µ.
Set η = ρµ−1, so 0 < η < 1. Suppose that ω = ρ−1(1 − Λ) = e2πiα is a
root of unity, i.e. α is rational. Then for z in a compact subset K of C at
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positive distance δ from the exceptional set E(α) ⊆ R where cos(x−nα) = 0
for some n ∈ N, there is a constant c = cK,λ > 0 such that

(24) ρ−1

(
4δ

cosh 2πy
− cηn

)
≤
∣∣∣∣βn+1(z;λ)− 1

βn(z;λ)− 1

∣∣∣∣ ≤ ρ−1

(
cosh 2πy

4δ
+ cηn

)
.

Proof. Suppose α = a
d with a, d ∈ Z, d > 0 and gcd(a, d) = 1. Then

cos 2π(x− nα) is periodic in n of period d. It can be checked that E(α) =
1
4d + 1

2dZ, 1
2d + 1

dZ or 1
dZ respectively, according to whether gcd(4a, d) = 1, 2

or 4. In any case E(α) ⊆ 1
4dZ and in fact these three affine lattices are

disjoint with union 1
4dZ.

As far as estimation is concerned, we may replace the cosine with the
function ‖ξ‖ denoting the distance from ξ to the nearest integer; namely, we
have

2
∥∥2x− 1

2

∥∥ ≤ | cos 2πx| ≤ π
∥∥2x− 1

2

∥∥ .
In our case, it is easily seen that minn∈Z

∥∥2x− 1
2 − 2nα

∥∥ = 2 dist(x,E(α)).
The rest of the proof is the same as in Proposition 9, using these estimates
to bound cos 2π(z − nα) below in terms of the distance to the exceptional
set, rather than using the bound | sinh 2πy| as before. �

8. The Apostol-Euler Polynomials

The Apostol-Euler polynomials are a generalization of the Euler polyno-
mials, introduced by Luo and Srivastava (see [6, 8]). For λ ∈ C, λ 6= 1, by
means of the generating function

(25) gE(x, λ, z)
def
=

2ezx

λez + 1
=

∞∑
n=0

En(x;λ)
zn

n!
,

which converges for |z| < | log(−λ)|. For λ = 1, we have the classical Euler
polynomials, En(x; 1) = En(x). For λ = −1, gE has a simple pole at z = 0
with residue −2. We can include this case also by defining 1

n!En(x;λ) to
be, in general, the coefficient of zn in the Laurent expansion of gE around
z = 0, or by redefining gE to be the holomorphic part, i.e. adding −2

z to
it when λ = −1. The latter actually makes more sense as far as unifying
results goes.

Formula (2.18) of [7] or (38) of [8] gives the relation

(26) En(x;λ) =
2

n+ 1

(
Bn+1(x;λ)− 2n+1Bn+1

(x
2

;λ2
))

between the Apostol-Euler and Apostol-Bernoulli polynomials. However, it
is easier to use the following relation to transfer results between them.

Lemma 2. For all λ ∈ C, we have

(27) En(x;λ) = − 2

n+ 1
Bn+1(x;−λ).

In particular, for λ = 1,

(28) Bn(x;−1) = −n
2
En−1(x), n ≥ 1,

and for λ = −1,

(29) En(x;−1) = − 2

n+ 1
Bn+1(x), n ≥ 1.
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Proof. Writing gB for the generating function (1) of the Apostol-Bernoulli
polynomials, we easily see that gB(x,−λ, z) = − z

2gE(x, λ, z), from which
(27) follows. �

Remark 7. The relation (27) shows that the Apostol-Euler and Apostol-
Bernoulli families are essentially the same. Apparently, (27) is a new ob-
servation, although we should note that (26) and (27) are related by the
following “duplication formula” for the Apostol-Bernoulli polynomials:

(30) 2nBn
(x

2
;λ2
)

= Bn(x;λ) + Bn(x;−λ).

Note also that by (28), Example 2 actually describes the asymptotic behavior
of the Euler polynomials.

The poles of the generating function gE are the numbers (2k + 1)πi −
log λ for k ∈ Z. This is also the case for λ = −1, since 0 is a pole of
gE(x,−1, z). However, the relations (27) and (29) suggest that we exclude
0 as a pole. This is consistent with redefining the generating function to be
the holomorphic part of gE at 0. Thus we set

SE =

{
{(2k + 1)πi− log λ : k ∈ Z} if λ 6= −1,

{2πik : k ∈ Z} if λ = −1.

If we write SB for the pole set of gB, and indicate the dependence on λ, this
means we have the symmetric relation SE(λ) = SB(−λ).

Now, via (27) we immediately obtain the Fourier expansion of the Apostol-
Euler polynomials as a special case of that of the Apostol-Bernoulli polyno-
mials (see also [7]):

(31) En(x;λ) =
2 · n!

λx

∑
k∈Z

e(2k+1)πix

((2k + 1)πi− log λ)n+1
,

valid for 0 ≤ x ≤ 1 when n ≥ 1 and for 0 < x < 1 when n = 0. This may be
rewritten in a form completely analogous to (8) as

(32)
En(x;λ)

2 · n!
=
∑
a∈SE

eax

an+1

which provides further justification for redefining the generating function as
we have indicated.

With (32) we now have the same results for the Apostol-Euler polynomials
as we did for the Apostol-Bernoulli polynomials; indeed, (27) says that they

are just a special case. We can also think of the poles ãk
def
= (2k + 1)πi −

log λ = 2πi
(
k − 1

2 − ξ
)

with ξ = log λ
2πi , as “half-integer versions” of the poles

ak = 2πi− log λ of gB. In any case, Lemma 1 still describes their ordering,
and Theorem 3 remains valid with (32) instead of (8). The normalization
of En(z;λ) analogous to (17) is given for λ 6= 0,−1 as

(33)

εn(z;λ) = −βn+1(z;−λ) = (−1)n+1 (log λ+ επi)n+1

2 · n!
eεπizλzEn(z;λ),

ε =

{
+1 if λ > 0 or Imλ < 0,

−1 if λ < 0 or Imλ > 0.
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The sign ε is determined by the relation log(−λ) = log(λ) + επi. We limit
ourselves to listing some of the analogous results formulated in terms of
En rather than Bn, without the specifics about the order of approximation,
which are of course still valid. For example, the limit in Corollary 6 is now

(34) lim
n→∞

εn(z;λ) = 1, λ /∈ (0,∞), λ 6= −1,

while the oscillating case in Proposition 7 is

(35) lim
n→∞

(
εn(z;λ)−

(
log λ+ πi

log λ− πi

)n+1

e2πiz

)
= 1, λ > 0,

and the limit of quotients in Proposition 8 becomes

(36) lim
n→∞

εn+1(z;λ)− 1

εn(z;λ)− 1
=

log λ+ επi

log λ− επi
, λ /∈ (−∞, 0),

all holding uniformly on compact subsets of C.
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Departamento de Matemáticas y Computación, Universidad de La Rioja,
Calle Luis de Ulloa s/n, 26004 Logroño, Spain

Email address: jvarona@unirioja.es

URL: http://www.unirioja.es/cu/jvarona/welcome.html


	1. Introduction
	2. The Fourier series of Bn(x;)
	3. Approximations to Bn()
	4. Approximations to Bn(z;) on the complex plane
	5. Asymptotic behavior of Bn(z;)
	6. Oscillatory phenomena
	7. Successive quotients
	8. The Apostol-Euler Polynomials
	References

