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Abstract

We define a functional analytic transform involving the Chebyshev polynomials Tn(x), with an inversion
formula in which the Möbius function μ(n) appears. If s ∈ C with Re(s) > 1, then given a bounded function
from [−1,1] into C, or from C into itself, the following inversion formula holds:

g(x) =
∞∑

n=1

1

ns
f

(
Tn(x)

)

if and only if

f (x) =
∞∑

n=1

μ(n)

ns
g
(
Tn(x)

)
.

Some other similar results are given.
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1. Introduction and main results

If we have an arithmetical function α : N → R (or C) and a function f : (0,∞) → R (or C),
we can define a new function g = α ◦ f by taking

g(x) = (α ◦ f )(x) =
∞∑

n=1

α(n)f

(
x

n

)
, x ∈ (0,∞). (1)

Moreover, let us suppose that α is invertible with respect to Dirichlet convolution (this happens
if and only if α(1) �= 0). Then, it is well known that we have the inversion formula f = α−1 ◦ g.
A typical case is when α is a completely multiplicative function; in this case α−1(n) = μ(n)α(n),
where μ(n) is the Möbius function. Thus, we have

f (x) =
∞∑

n=1

μ(n)α(n)g

(
x

n

)
, x ∈ (0,∞)

(see, for instance, [1]). A common example of a completely multiplicative function is α(n)=n−s ,
s ∈ C, which gives rise to Dirichlet series.

In this paper we present a new transform/inverse pair in which both the Chebyshev polynomi-
als {Tn(x)}∞n=1 and the Möbius function μ(n) appear. The Chebyshev polynomials satisfy many
identities and orthogonal conditions, but for our purposes only the property

Tm

(
Tn(x)

) = Tmn(x) (2)

is essential. For x ∈ [−1,1], this formula is clear from Tk(x) = cos(k arccosx) and, for x ∈ C, it
follows by analytic continuation. It is interesting to note that, up to a linear change of variable,
{xn} and the Chebyshev polynomials are the unique families of polynomials that satisfy an iden-
tity similar to (2) (see [2, Chapter 4, Theorem 4.4] for details); in particular, similar inversion
formulas can be given for expansions in {xn} on [0,1].

Prior to continuing, let us establish our notation. For x ∈ [−1,1], we have Tn(x) =
cos(n arccosx) so Tn : [−1,1] → [−1,1]. But we can also consider Tn both as Tn : R → R or
Tn : C → C. Moreover, Tn(x) ∈ Z[x], so we also have Tn : Z → Z and Tn : Q → Q. Let us then
use Δ to denote [−1,1], R, C, Z, or Q, accordingly. Thus, for functions f of type f :Δ → R

(or C), the composition f (Tn(x)) is well defined for every n. (Some perhaps more “esoteric”
choices can be taken into account for Δ, such as [1,∞), N, or the algebraic numbers.)

The main result of this paper is the following:

Theorem 1. Let s ∈ C with Re(s) > 1 and Δ = [−1,1], R, C, Z, or Q. If f is a bounded function
defined on Δ, then the series

g(x) =
∞∑

n=1

1

ns
f

(
Tn(x)

)
, x ∈ Δ, (3)

is absolutely convergent, the function g is bounded, and we can recover f as

f (x) =
∞∑

n=1

μ(n)

ns
g
(
Tn(x)

)
, x ∈ Δ. (4)

Conversely, if we have a bounded function g on Δ, the function f defined as in (4) is bounded
and fulfills (3).
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We also study some other conditions that yield similar results. In particular, in Section 3 we
give a more general approach to our inversion formula.

2. The transform and the inversion formula: Proof of the main theorem

Let us begin by defining an operation � similar to the ◦ in (1), but properly adapted to our
circumstances. Given a function f on Δ and an arithmetical function α : N → R (or C), we define
the transform

g(x) = (α � f )(x) =
∞∑

n=1

α(n)f
(
Tn(x)

)
, (5)

provided that the series converges.
Let us suppose that we have another arithmetical function β : N → R (or C) that is inverse to

α with respect to Dirichlet convolution, i.e., α ∗ β = δ with δ(1) = 1 and δ(n) = 0 for n > 1. Let
us calculate (β � g)(x), at least formally, from (5). If the formal manipulations that follow are
analytically justified, we can reorder series, group the terms such than nm = k, use (2), α ∗β = δ,
and T1(x) = x, so

(β � g)(x) =
∑
n∈N

β(n)(α � f )
(
Tn(x)

)
=

∑
n∈N

β(n)
∑
m∈N

α(m)f
(
Tm

(
Tn(x)

))
=

∑
n,m∈N

β(n)α(m)f
(
Tmn(x)

)

=
∑
k∈N

( ∑
nm=k

β(n)α(m)

)
f

(
Tk(x)

)
=

∑
k∈N

(α ∗ β)(k)f
(
Tk(x)

)
= f (x). (6)

Thus, we have found the inversion formula. It remains to determine conditions under which
the series that define (α � f )(x) and (β � g)(x) converge and the manipulations in (6) can be
justified.

Some simple assumptions guaranteeing this are the following:

Proposition 1. Let α and β be two arithmetical functions related by α ∗ β = δ, and such that∑∞
n=1 |α(n)| < ∞ and

∑∞
n=1 |β(n)| < ∞; let Δ be [−1,1], R, C, Z, or Q. If f is a bounded

function defined on Δ, then the series

g(x) =
∞∑

n=1

α(n)f
(
Tn(x)

)
, x ∈ Δ, (7)

is absolutely convergent, the function g is bounded by

sup
x∈Δ

∣∣g(x)
∣∣ �

( ∞∑∣∣α(n)
∣∣) sup

x∈Δ

∣∣f (x)
∣∣, (8)
n=1
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and we can recover f as

f (x) =
∞∑

n=1

β(n)g
(
Tn(x)

)
, x ∈ Δ. (9)

Conversely, if we have a bounded function g on Δ, the function f defined as in (9) is bounded in
a similar way and fulfills (7).

With this, we have

Proof of Theorem 1. In the proposition, take α(n) = αs(n) = n−s , which is a completely
multiplicative function whose inverse is α−1(n) = μ(n)n−s . As Re(s) > 1, it follows that∑∞

n=1 |a(n)| = ∑∞
n=1 |n−s | = ζ(Re(s)), where ζ(s) denote the Riemann’s zeta function. The in-

version part is similar. �
Another example. Let us consider the Liouville function λ(n), defined by

λ(n) =
{

1, if n = 1,
(−1)a1+···+ak , if n = p

a1
1 · · ·pak

k

(where p
a1
1 · · ·pak

k denotes the decomposition of n into prime factors). λ(n) is completely mul-
tiplicative whose inverse function is λ−1(n) = μ(n)λ(n) = |μ(n)|. Then, in a similar way to
Theorem 1, for Re(s) > 1 and bounded functions, we have

g(x) =
∞∑

n=1

λ(n)

ns
f

(
Tn(x)

)
, x ∈ Δ,

if and only if

f (x) =
∞∑

n=1

|μ(n)|
ns

g
(
Tn(x)

)
, x ∈ Δ.

3. A more general approach

The assumptions in Proposition 1 are very demanding. Here we study other general conditions
under which the transformation formula holds.

For an arithmetical function ρ, we say that f ∈ L(Δ,ρ) if

∞∑
n=1

∣∣ρ(n)f
(
Tn(x)

)∣∣ < ∞, ∀x ∈ Δ

(recall that we are using Δ to denote [−1,1], R, C, Z or Q). In particular, f ∈ L(Δ,α) means
that (5) converges absolutely for every x ∈ Δ.

Once again we use the arithmetical function δ defined by δ(1) = 1 and δ(n) = 0 for all n > 1.
The relation δ � f = f follows easily from T1(x) = x.

Analogously to the mixed associative property between ◦ and Dirichlet convolution ∗, we
have the following version between � and ∗. The proof is straightforward, because the absolute
convergence allows the rearrangement of the sums.
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Proposition 2. Let α,β be two arithmetical functions, f :Δ → R (or C), and suppose at a given
x ∈ Δ, ∑

n,m∈N

∣∣α(n)β(m)f
(
Tnm(x)

)∣∣ =
∑
k∈N

(|α| ∗ |β|)(k)
∣∣f (

Tk(x)
)∣∣ < ∞. (10)

Then, all the series involved in the definitions of (α � (β � f ))(x) and ((α ∗ β) � f )(x) are
absolutely convergent and(

α � (β � f )
)
(x) = (

(α ∗ β) � f
)
(x).

In particular, if f ∈ L(Δ, |α| ∗ |β|), then α � (β � f ) = (α ∗ β) � f .

In this general context, the inversion formula becomes

Proposition 3. Let α be an arithmetical function with Dirichlet convolution inverse α−1. Given
a function f :Δ → R (or C), with f ∈ L(Δ, |α| ∗ |α−1|), the transform g(x) = (α � f )(x) is
defined for all x ∈ Δ. Moreover, if g ∈ L(Δ, |α|∗ |α−1|), then f (x) = (α−1 �g)(x) for all x ∈ Δ.

Proof. By Proposition 2,

α−1 � g = α−1 � (α � f ) = (
α−1 ∗ α

) � f = δ � f = f.

For the second part, recall that |α| ∗ |α−1| = |α−1| ∗ |α|. �
In general, it does not seem easy to check that the condition f ∈ L(Δ, |α| ∗ |α−1|) implies

g ∈ L(Δ, |α| ∗ |α−1|); this—if true—would mean that the inversion formula α−1 � g is defined
without this extra hypothesis.

The following special case of Proposition 3 has special interest:

Proposition 4. Let α be a completely multiplicative arithmetical function, f :Δ → R (or C), and
suppose that f ∈ L(Δ,αd) (where d(n) is the number of divisors of n). Then

g(x) =
∑
n∈N

α(n)f
(
Tn(x)

)
is defined for all x ∈ Δ. Moreover, if g ∈ L(Δ,αd), then

f (x) =
∑
n∈N

μ(n)α(n)g
(
Tn(x)

)
for all x ∈ Δ.

Proof. If α is completely multiplicative, then α−1(n) = μ(n)α(n). Moreover,(|α| ∗ ∣∣α−1
∣∣)(k) =

∑
nm=k

∣∣α(n)μ(m)α(m)
∣∣ �

∑
nm=k

∣∣α(nm)
∣∣ = d(k)|α|(k) = ∣∣d(k)α(k)

∣∣,
so the hypothesis f ∈ L(Δ,αd) allows us to apply Proposition 3. The same holds with respect
to g ∈ L(Δ,αd). �
Remark. As commented previously, it does not seem easy to check if g ∈ L(Δ,αd) given that
f ∈ L(Δ,αd). However, we claim that something weaker is true:

f ∈ L
(
Δ,αd2) ⇒ g ∈ L(Δ,αd).
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To prove this, take into account that d(n) � d(k) when n | k, and notice also that |α| is completely
multiplicative. Thus

∑
n∈N

d(n)
∣∣α(n)g

(
Tn(x)

)∣∣ =
∑
n∈N

d(n)
∣∣α(n)

∣∣∣∣∣∣∑
m∈N

α(m)f
(
Tm

(
Tn(x)

))∣∣∣∣
�

∑
k∈N

d(k)

( ∑
nm=k

∣∣α(n)α(m)
∣∣)∣∣f (

Tk(x)
)∣∣

=
∑
k∈N

d(k)2
∣∣α(k)

∣∣∣∣f (
Tk(x)

)∣∣ < ∞

since f ∈ L(Δ,αd2), so the claim is proved. Actually, the extra factor d(n) is not very trouble-
some, because d(n) = o(nr) for every r > 0 (see [1, Section 18.1, Theorem 315, p. 260]).

References

[1] G.M. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, fifth ed., Oxford Univ. Press, 1979.
[2] T.J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, second ed., Wiley,

1990.


