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Abstract

We define a convolution-like operator which transforms functions on a space X via functions on an
arithmetical semigroup S, when there is an action or flow of S on X. This operator includes the well-known
classical Möbius transforms and associated inversion formulas as special cases. It is defined in a sufficiently
general context so as to emphasize the universal and functorial aspects of arithmetical Möbius inversion.
We give general analytic conditions guaranteeing the existence of the transform and the validity of the
corresponding inversion formulas, in terms of operators on certain function spaces. A number of examples
are studied that illustrate the advantages of the convolutional point of view for obtaining new inversion
formulas.
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1. Introduction

Few subjects in number theory seem as prone to rediscovery and reinvention as that of Möbius
inversion. A survey of the literature will convince one not only of the ubiquitousness but also of
the multiplicity of “Möbius inversion formulas,” and that without considering the more exotic
generalizations of Dirichlet convolution, or venturing into less number-theoretical realms such
as combinatorics or poset theory and incidence algebras. Recently, there has also been increased
interest from physicists, resulting in formulas new and old (see for example [9,10,15,20]).

An instructive historical survey of the original work of Möbius, as well as Chebyshev and
Cesàro, is [2]. Möbius’ original inversion formula is not the one inverting finite divisor sums, but
rather infinite sums

∑
n anf (xn) transforming a power series f (see [17] and our Example 9).

Many of these “Möbius transforms” are formal or finite series. The most widely known are series
of the form

∑
n anf (nx) or

∑
n anf (x/n) ([13, §16.5, Theorem 270] or [21, §20]). One of the

more famous analytic ones is that introduced by Riemann to approximate π(x), the number of
primes less than or equal to x: π(x) ≈ R(x) = ∑∞

n=1
μ(n)

n
Li(x1/n). These classical transforms

involve multiplicative convolution on N, but the range of arithmetical functions can be any com-
mutative ring. For instance, Möbius inversion in Q[z] yields the expression

∏
n|m(zn − 1)μ(m/n)

for the mth cyclotomic polynomial. More recently, in [15] we find
∑∞

n=1 f (nax) with a ∈ R.
The corresponding inversion formula is called “Chen’s modified Möbius inversion formula” and
is applied in physics.

Clearly a transform of the form
∑∞

n=1 anf (ϕ(n, x)) is in the offing. Furthermore, what makes
inversion work is that these ϕ satisfy ϕ(n,ϕ(m,x)) = ϕ(nm,x), namely, they involve an action or
“flow” of N, in the sense of dynamical systems. This very type of general transform and its inver-
sion formula goes back to Cesàro [5], for N-flows on R and ignoring questions of convergence.
The result, implicit in the multitude of classical inversion formulas, is not explicitly named, and
has been rediscovered in [3], independently by the second author, and quite probably by others.
Cesàro’s insight, coming long before the development of the theory of arithmetical dynamical
systems, was neglected. Such generality was not needed in light of the predominance in elemen-
tary and analytic number theory of the four “standard” flows nx, x/n, xn, x1/n, corresponding
to the basic arithmetic operations, although they are not the only ones. In fact, these four are
conjugate (see Example 1), which already suggests the classification problem for arithmetical
flows.

Given that the most widely used inversion formulas are all special cases, and that it is no more
difficult to prove the general formula than a given particular one, at least for finite sums, it seems
logical to merely cite which flow we are using in a given situation, rather that list a number of
separate inversion formulas (see for instance [1,13,21]). If nothing else, one gains economy of
resources.

In this paper we hope to show the usefulness of the dynamical point of view in elucidating
the universal or functorial nature of Möbius inversion (see for instance Examples 2, 8 and 11).
We study inversion formulas derived from flows on general arithmetical semigroups S, showing
how the interaction of analytic, algebraic and dynamical considerations unifies and simplifies
disparate results, providing general conditions for the validity of inversion formulas and incor-
porating examples that at first sight do not quite seem to fit into the framework (e.g. Example 7),
and illustrating the use of convolutional algebraic methods in interesting special cases (Exam-
ples 5, 6, 8, 9, or 10).

Our chief aim is to make explicit and create awareness of the role that semigroup flows have
been implicitly playing in inversion formulas since the very beginning. We wish to focus attention
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on those ideas closest to analytic number theory, hence our choice of arithmetical semigroups,
though generalizations will be suggested by our results. We do this both for the sake of brevity
and because there are already enough compelling examples in the field.

We shall begin by defining the general setting we work in, and proceed to study the main ana-
lytical tool in the theory of Möbius transforms, which is a convolution-like action of arithmetical
functions on certain function spaces. For N and finite series, this point of view is introduced,
e.g., in [1]. We study the technical conditions required for its extension to convergent series. Al-
gebraically, the formulation of the inversion principle is essentially functorial and hence allows
for great generality. We may vary the underlying semigroup as well as the space the flow acts
on, the range of arithmetical functions and the function spaces the inversion formulas apply to.
One should keep in mind that the general principle of Möbius inversion is the structure of the
Dirichlet convolution algebra of arithmetical functions, which is a ring of formal power series
[4,16]. The less studied aspect in this theory up to now has been the dynamical ingredient of the
flow, whose role we will attempt to point out both in the general results and in our examples. No
doubt this is the area where the most work remains to be done.

2. Definitions

In order to produce more general inversion formulas without straying too far from the spirit
of the original classical number-theoretic ones, we will work with semigroups that preserve the
essence of N yet allow enough generality that they cover examples essentially unrelated to it.
This is provided by the concept of arithmetical semigroup, whose definition we now recall.

Definition 1. An arithmetical semigroup is a commutative semigroup S such that

(1) S has a neutral element, 1S (so one could call it an arithmetical monoid, although the term
semigroup has prevailed).

(2) There is a finite or countably infinite subset P of primes such that S has unique factorization
with respect to P, i.e., every element n �= 1S of S can be written uniquely, up to reordering, in
the form n = p

e1
1 p

e2
2 · · ·pek

k , where the pi are distinct elements of P, and the ei are positive
integers.

(3) There is a real-valued norm mapping N on S satisfying
(a) N(1S) = 1 and N(p) > 1 for p ∈ P,
(b) N(st) = N(s)N(t) for all s, t ∈ S,
(c) for each x > 0 there are only finitely many s ∈ S with N(s) � x.

Remark 1. In particular, S must be finite or countably infinite. Also, note that d | n implies
N(d) � N(n), and that the value semigroup N(S) is a discrete subsemigroup of R∗ = R \ {0},
the multiplicative group of real numbers. It is also often useful and convenient to consider an
equivalent degree or dimension map ∂ , rather than the norm, related to it via exponentiation,
N(s) = c∂(s) for a fixed c > 1. We then require of ∂ that ∂(1S) = 0, ∂(p) > 0, ∂(st) = ∂(s)+∂(t),
and that there are only finitely many s ∈ S of bounded degree.

Such semigroups provide a context for studying abstract analytic number theory: e.g. the dis-
tribution of primes. (N, ·,1) is the prototype. Other examples vary from the number-theoretical,
such as the Gaussian integers or Z[√2], each modulo units or, more generally, the multiplicative
semigroup of non-zero integral ideals in a number field, to categorical ones, such as semisimple
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finite rings, compact simply connected Lie groups, finite topological spaces and finite graphs.
See [14] for the development of this theory and ample references.

Next, we review the main facts about general Dirichlet convolution.
Fix a commutative ring R. An arithmetical function on S is a function α : S → R. The set

A = A(S,R) of R-valued arithmetical functions on S is a commutative R-algebra with respect
to pointwise sum and Dirichlet convolution, defined by (α ∗β)(n) = ∑

ab=n α(a)β(b) (the finite-
ness condition on the norm function of S implies this is a finite sum). The unit is the function
δ(1S) = 1R , δ(s) = 0 if s �= 1S . As usual, we use A∗ to denote the set of invertible functions of A.
The arithmetical functions with finite support, i.e. f (s) = 0 except for finitely many s, form the
monoid ring R[S], which is a subalgebra of A.

The order function ord(α) = min{N(s): α(s) �= 0} for α �= 0 and ord(0) = ∞ defines a com-
plete non-Archimedean (submultiplicative) norm ‖α‖ = 1/ord(α) which is multiplicative if R is
a domain. In fact, A is isomorphic to the power series algebra over R in as many indeterminates
as the cardinality of the set of primes P in S. Additionally, if R is a unique factorization domain,
so is A (see [4,14,16]).

As usual, an arithmetical function α is said to be multiplicative if α(nm) = α(n)α(m) when
n,m are coprime, and completely multiplicative if this holds for every n,m ∈ S. The convolution
of multiplicative functions is multiplicative. We shall frequently use the fact that f · (g ∗ h) =
fg ∗f h if f is completely multiplicative, where · or juxtaposition denote the pointwise product.

An arithmetical function α is invertible with respect to ∗ if and only if α(1S) ∈ R∗ (units of R).
Every non-zero multiplicative function satisfies α(1S) = 1R , hence is invertible. The Möbius
function μ of an arithmetical semigroup is defined just as for N in terms of prime decomposition.
It is multiplicative, with 1 ∗ μ = μ ∗ 1 = δ where 1 denotes the constant function with value 1R

(from here on, we shall drop subscripts and let the context make clear what structure we are
referring to). If g is invertible and f is completely multiplicative, then (fg)−1 = fg−1.

The dynamical aspect of inversion formulas is contained in the following

Definition 2. For a semigroup S and a non-empty set X, an S-flow on X or action of S on X is a
map ϕ : S × X → X satisfying ϕ(m,ϕ(n, x)) = ϕ(mn,x). If S has a unit 1 then we also require
ϕ(1, x) = x (e.g. for S an arithmetical semigroup).

Let E(X) be the monoid of functions mapping X to itself, under composition. Then a flow
may be equivalently defined as a monoid homomorphism ϕ : S → E(X), denoting the image of
s ∈ S by ϕs . This is the transformational or representational point of view. The relation between
both is of course ϕs(x) = ϕ(s, x). We shall use both notations.

If S is a topological semigroup and X is a topological space one also requires joint continuity.
In this case E(X) denotes the continuous self-mappings of X. Here the countable semigroup
S will be given the discrete topology and often X will be merely a set on which we may also
assume given the discrete topology.

Remark 2. Clearly, in an arithmetical semigroup S a flow is determined by the action of the
primes. In other words, a flow may also be regarded as a collection {ϕp: p ∈ P} of commuting
self-mappings of X, in addition to the trivial map ϕ1 = ι, the identity. It will then be understood
that ϕn for n ∈ S having the factorization n = ∏r

i=1 p
ei

i , is the map obtained as the composition
ϕn = ϕ

◦e1
p1 ◦ · · · ◦ ϕ

◦er
pr

.
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Let us briefly recall the algebraic methods whereby flows may be transferred from one semi-
group and space to another, thus providing us with standard ways of both generating new
examples from given ones and also of classifying them.

If (S,X,ϕ) and (S,Y,ψ) are S-flows, a flow homomorphism is a map h : X → Y such that
h(ϕ(s, x)) = ψ(s,h(x)). In other words, h◦ϕs = ψs ◦h for all s ∈ S. When X,Y are topological
spaces, continuity is also required. A flow isomorphism thus establishes the conjugacy relation
ψs = h ◦ ϕs ◦ h−1 between the maps ψs,ϕs . Conversely, this relation serves to transfer the flow
from X to Y via a homeomorphism h : X → Y .

If η : T → S is a semigroup homomorphism, then an S-flow on X may be pulled back to
a T -flow on X by defining (η∗ϕ)(t, x) = ϕ(η(t), x). Equivalently, viewing the flow as a map
ϕ : S → E(X), this is just the composition ϕ ◦ η.

We next turn to the context we wish to formulate inversion formulas in.
Let M be an R-module and consider the space of functions f : X → M . Now, in order to

be able to “do analysis,” which for our purpose means taking infinite sums, we require (R, | · |)
to be a complete valued ring, and (M,‖ · ‖) a complete normed R-module. In the case of finite
sums we can just assume the discrete topologies. The exact nature of M,R is not essential to
the inversion principle. What we need is that the definitions make sense and that convergence is
good enough to justify the exchange of sums involved in the proofs.

3. Generalized convolution with respect to a flow

We will generalize the method given in [1, §2.14] to arithmetical semigroups and incorporate
an S-flow ϕ into the convolution operator.

Definition 3. Given an R-valued arithmetical function α on S, an S-flow ϕ on X, and a function
f : X → M , the ϕ-convolution of α and f is the function α �ϕ f : X → M defined by

(α �ϕ f )(x) =
∑
n∈S

α(n)f
(
ϕ(n, x)

) =
∑
n∈S

α(n)f
(
ϕn(x)

)
, (1)

provided the series converges. We shall drop the subscript ϕ if the flow is fixed.

Dynamically, this is involves summing f along the orbit of x under the flow ϕ. The arithmeti-
cal function α often serves as a convergence factor. Hence, like all convolutions, this too is a kind
of “averaging” of the function. The algebraic justification of the name “convolution” is given in
Section 5, Example 2.

Summation over the arithmetical semigroup S means, by definition, taking the limit of the
finite partial sums

∑
n∈S,N(n)�x as x → ∞. Note that for any function f : X → M , we have

(δ � f )(x) =
∑
n∈S

δ(n)f
(
ϕ(n, x)

) = 1 · f (
ϕ(1, x)

) = f (x).

Since we assume a complete valuation and norm, the criterion of absolute convergence holds.
This leads to the following considerations: given an R-valued arithmetical function α on S, the
valuation on R defines the real-valued non-negative arithmetical function |α| on S by |α|(n) =
|α(n)|. In general, let us call a real-valued non-negative arithmetical function w a weight and
denote the set of weights by WS . It satisfies the following properties:



M. Benito et al. / Journal of Number Theory 128 (2008) 390–412 395
(1) It is closed under Dirichlet convolution.
(2) For any R-valued arithmetical functions α,β , we have |α ∗ β| � |α| ∗ |β|.
(3) Given a weight w, we have w ∈ A(S,R)∗ if and only if w(1) > 0. Note however, that w−1 ∈

WS if and only if w = kδ for some k > 0, where δ is the (real-valued) delta function at 1.
(4) For w,w1,w2 ∈ WS , if w1 � w2, then w ∗ w1 � w ∗ w2.
(5) If v,w ∈ WS then v(1)w � v ∗ w.

Definition 4. For a weight w, let Lϕ(X,w) denote the set of functions f : X → M for which

∑
n∈S

w(n)
∥∥f

(
ϕ(n, x)

)∥∥ < ∞ ∀x ∈ X.

Note that we do not require uniform convergence in x, although in practice this may be more
convenient. Absolute convergence states that α � f is defined for f ∈ Lϕ(X, |α|). Clearly, for a
given weight w, the space Lϕ(X,w) is an R-submodule of the set of all functions f : X → M ,
and the comparison test holds: if w1,w2 ∈ WS with w1 � w2, then Lϕ(X,w2) ⊆ Lϕ(X,w1).
Furthermore, if ϕ : S → E(X) is an S-flow on X, τ : X → Y is a homeomorphism, and ψ : S →
E(Y ) is the S-flow on Y conjugate to ϕ under τ , then f ∈ Lϕ(X,w) if and only if f ◦ τ−1 ∈
Lψ(Y,w).

The following lemma is useful as a criterion for determining the order of growth of ϕ-
convolutions. Note its resemblance to a cancellation property.

Lemma 1. Let α ∈ A(S,R) and v,w ∈ WS , with |α| � w. If f ∈ Lϕ(X,w)∩Lϕ(X,w ∗ v), then
g = α �ϕ f ∈ Lϕ(X,v).

Proof. Clearly g = α � f is defined and satisfies ‖g(y)‖ �
∑

n∈S w(n)‖f (ϕ(n, y))‖. Since all
summands are positive, we may reorder:

∑
m∈S

v(m)
∥∥g

(
ϕ(m,x)

)∥∥ �
∑
m∈S

v(m)
∑
n∈S

w(n)
∥∥f

(
ϕ
(
n,ϕ(m,x)

))∥∥
=

∑
m,n∈S

v(m)w(n)
∥∥f

(
ϕ(nm,x)

)∥∥
=

∑
l∈S

∑
mn=l

v(m)w(n)
∥∥f

(
ϕ(l, x)

)∥∥
=

∑
l∈S

(w ∗ v)(l)
∥∥f

(
ϕ(l, x)

)∥∥ < ∞. �

Removing the absolute values we get the following “mixed associative property” of Dirichlet
and ϕ-convolution, which forms the basis of the inversion principle.

Theorem 1. Let α,β ∈ A and f : X → M . If f ∈ Lϕ(X, |β|) ∩ Lϕ(X, |α| ∗ |β|), then f ∈
Lϕ(X, |α ∗ β|) and β � f ∈ Lϕ(X, |α|), with

α � (β � f ) = (α ∗ β) � f.
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Proof. Let us check first that all parts of this equation are defined. Since |α ∗ β| � |α| ∗ |β|,
we have f ∈ Lϕ(X, |α ∗ β|) and hence the convolution (α ∗ β) � f is defined. Next, since f ∈
Lϕ(X, |β|), the convolution β � f is defined and, by Lemma 1, β � f ∈ Lϕ(X, |α|) so that
α � (β � f ) is defined. That they are equal follows from reordering just as in the lemma:

(
α � (β � f )

)
(x) =

∑
n∈S

α(n)(β � f )
(
ϕn(x)

) =
∑
n∈S

α(n)
∑
m∈S

β(m)f
(
ϕm

(
ϕn(x)

))

=
∑

n,m∈S

α(n)β(m)f
(
ϕmn(x)

) =
∑
l∈S

( ∑
mn=l

α(n)β(m)

)
f

(
ϕl(x)

)

=
∑
l∈S

(α ∗ β)(l)f
(
ϕl(x)

) = (
(α ∗ β) � f

)
(x).

The reordering is justified by the absolute convergence of the intermediate double sum:

∑
n,m∈S

∣∣α(n)β(m)
∣∣∥∥f

(
ϕnm(x)

)∥∥ =
∑
l∈S

∑
nm=l

∣∣α(n)
∣∣∣∣β(m)

∣∣∥∥f
(
ϕl(x)

)∥∥
=

∑
l∈S

(|α| ∗ |β|)(l)∥∥f
(
ϕl(x)

)∥∥ < ∞. �

Remark 3. Note that it is necessary to assume hypotheses that imply β � f is defined. Taking
α = 0 would make the double sum trivially convergent regardless of whether the series defining
β � f converged or not.

Given that f ∈ Lϕ(X, |β|), the convergence of the double sum, i.e., the condition f ∈
Lϕ(X, |α| ∗ |β|), implies by Lemma 1 that β �f ∈ Lϕ(X, |α|), and hence the first two equalities
in the above proof hold.

Remark 4. If we denote the transform by Tαf = α � f , then Theorem 1 says that TαTβ = Tα∗β

on appropriate functions. Clearly also Tα + Tβ = Tα+β . Thus, T represents the ring A(S,R) in
spaces of functions X → M .

Next, let us discuss inversion.

Theorem 2. Let α ∈ A(S,R)∗ have inverse α−1. If f ∈ Lϕ(X, |α|)∩Lϕ(X, |α|∗|α−1|), then g =
α � f ∈ Lϕ(X, |α−1|) and f = α−1 � g. Conversely, if g ∈ Lϕ(X, |α−1|) ∩ Lϕ(X, |α| ∗ |α−1|),
then f = α−1 � g ∈ Lϕ(X, |α|) and g = α � f .

Proof. Immediate from Theorem 1. �
The following special case is the general Möbius inversion formula for a flow.

Theorem 3. Let α ∈ A(S,R) be non-zero and completely multiplicative, and ϕ an S-flow on X.
Let d be the divisor function on the arithmetical semigroup S. If f ∈ Lϕ(X,d|α|), then the
transform

g(x) =
∑

α(n)f
(
ϕ(n, x)

)
(2)
n∈S
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is defined, and the inversion formula

f (x) =
∑
n∈S

μ(n)α(n)g
(
ϕ(n, x)

)
(3)

holds. Conversely, if g ∈ Lϕ(X,d|α|), then (3) is defined and (2) holds.

Proof. Since α is completely multiplicative, α−1 = μα. Now, |α| is completely multiplicative
and non-negative, hence

|α| ∗ ∣∣α−1
∣∣ = |α| ∗ |μ||α| = |α|(|1| ∗ |μ|) = |α|2ω � |α|d,

where ω(n) counts the number of distinct prime factors of n. Thus∣∣α−1
∣∣ = |μ||α| � |α| � |α|2ω = |α| ∗ ∣∣α−1

∣∣ � d|α|

and therefore

Lϕ

(
X,d|α|) ⊆ Lϕ

(
X, |α| ∗ ∣∣α−1

∣∣) ⊆ Lϕ

(
X, |α|) ⊆ Lϕ

(
X,

∣∣α−1
∣∣).

The result now follows from Theorem 2. �
A straightforward modification of the proof in [13, §18.1] shows that in any arithmetical

semigroup, d(n) = O(N(n)δ) for every δ > 0. Given the irregular variation of d , it is more
practical to try to determine convergence by weighing against the norm function. Thus, when
studying the “α-Möbius transform” of Theorem 3, we might consider one of the subspaces
Lϕ(X, |α|Nδ) ⊆ Lϕ(X,d|α|) with δ > 0. The functions in Lϕ(X, |α|Nδ) are such that when
weighted by α, they decay “at infinity” along the flow as the −δth power of the norm:

∃cδ(x) > 0: ∣∣α(n)
∣∣∥∥f

(
ϕ(n, x)

)∥∥ � cδ(x)

N(n)δ
∀x ∈ X, n ∈ S,

where cδ(x) is independent of n ∈ S. As remarked before, we do not require uniformity in x. The
next result estimates the growth of the Möbius transform.

Theorem 4. If α ∈ A is a non-zero completely multiplicative arithmetical function and f ∈
Lϕ(X, |α|N2δ) for some δ > 0, then both α � f and α−1 � f are defined and belong to
Lϕ(X, |α|Nδ).

Proof. First note that since |α−1| = |μα| � |α|, we have

Lϕ

(
X, |α|) ∩ Lϕ

(
X, |α| ∗ w

) ⊆ Lϕ

(
X,

∣∣α−1
∣∣) ∩ Lϕ

(
X,

∣∣α−1
∣∣ ∗ w

)
for any weight w ∈ WS . This inclusion and Lemma 1 imply that for f ∈ Lϕ(X, |α|) ∩
Lϕ(X, |α| ∗ w), both α � f and α−1 � f are defined and belong to Lϕ(X,w). Since
Lϕ(X, |α|N2δ) ⊆ Lϕ(X,d|α|) ⊆ Lϕ(X, |α|), it suffices to show that Lϕ(X, |α|N2δ) ⊆
Lϕ(X, |α| ∗ |α|Nδ) for any δ > 0. Now, |α| ∗ |α|Nδ = |α|(1 ∗ Nδ), so the inclusion follows
from the estimate (1 ∗ Nδ)(n) = ∑

m|n N(m)δ � d(n)N(n)δ � cδN(n)2δ. �
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Next, consider the space

Lϕ

(
X, |α|) =

⋂
δ>0

Lϕ

(
X, |α|Nδ

)
.

These functions decay at infinity along the flow, faster than any power of the norm. For most
“interesting” arithmetical semigroups, including the classical number-theoretic ones, we have∑

n∈S N(n)−k < ∞ for k � 0. This condition implies that Lϕ(X, |α|) is in fact equal to the
space of functions with such decay. Theorem 4 immediately implies the following result:

Corollary 5. If α ∈ A is non-zero and completely multiplicative and f ∈ Lϕ(X, |α|), then both
α � f and α−1 � f are defined and again belong to Lϕ(X, |α|).

In other words, Lϕ(X, |α|) is closed under both the α-Möbius transform and the α−1-Möbius
transform. This is analogous to what happens with the classical Fourier transform and the space
of rapidly decreasing functions.

Remark 5. If X is a topological space, we may consider functions f : X → M whose support
Z is such that for each x ∈ X there are only finitely many n ∈ S with ϕ(n, x) ∈ Z. Equivalently,
the point ϕn(x) of the orbit of x escapes Z as N(n) → ∞. Thus there is a bound ν(x) such
that N(n) > ν(x) implies ϕn(x) /∈ Z, and then the sum defining the convolution α � f is finite:∑

n∈S α(n)f (ϕn(x)) = ∑
N(n)�ν(x) α(n)f (ϕn(x)). Such a finiteness condition will be satisfied

for functions with compact support if for fixed x ∈ X, the point ϕn(x) “escapes to infinity,” i.e.,
escapes any fixed compact set, as N(n) → ∞. This is satisfied for the flows x/n and nx on
(0,+∞). In fact, in these examples, compact support is stronger than what is needed.

4. Sums over primes

The transform Tαf = α � f involves summation over all elements n ∈ S. We might ask what
can be said about the operator

Pαf (x) =
∑
p∈P

α(p)f
(
ϕ(p,x)

)
. (4)

A moment’s thought shows it is not invertible. However, a function α : P → R has a unique
extension to a completely multiplicative function on S, which we may continue to denote by α.
Then the operator Pα is the same as Tαβ − I , where I is the identity operator and β is the
arithmetical function such that β(1) = 1, β(p) = 1 for primes p, and β(s) = 0 in all other cases.
From this point of view, we can study Pα by studying Tαβ = I + Pα .

On the other hand, Pα can also be studied in its own right, applying the techniques of analytic
functional calculus to obtain series expansions of Tαβ -transforms in terms of the iterates of Pα ,
which we may call “P -expansions.” Namely, if F(T ) = ∑∞

r=0 arT
r ∈ R[[T ]], then an operator

F(Pα) will be defined on functions f for which the r-fold iterates P r
αf are defined and satisfy∑∞

r=0 |ar |‖P r
αf (x)‖ < ∞. On suitable functions, (FG)(Pα) = F(Pα)G(Pα), and thus if F ∈

R[[T ]]∗, with G = 1/F , we will get an inversion relation

g = G(Pα)f ⇐⇒ f = F(Pα)g.
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Now by induction one formally has, for any arithmetical functions α1, . . . , αr ,

Pα1Pα2 · · ·Pαr f (x) =
∑

(p1,p2,...,pr )∈Pr

α1(p1) · · ·αr(pr)f
(
ϕ(p1 · · ·pr, x)

)
(5)

and therefore

P r
αf (x) =

∑
(p1,p2,...,pr )∈Pr

α(p1) · · ·α(pr)f
(
ϕ(p1 · · ·pr, x)

)
. (6)

If α is completely multiplicative, then one may gather terms by the value of Ω(n), the total
number of prime factors of n, counted with multiplicity, to obtain

P r
αf (x) =

∑
Ω(n)=r

B(n)α(n)f
(
ϕ(n, x)

)
, (7)

where B(n) is the number of different decompositions of n into primes, counting order. B(n)

corresponds to the multinomial coefficient counting the number of different vectors of length
r = Ω(n) formed from k = ω(n) different objects (the primes p dividing n), each appearing
with a prescribed multiplicity, namely vp(n), the valuation of n at p. One has

B(n) = Ω(n)!∏
p∈P

vp(n)! = (
∑

p∈P
vp(n))!∏

p∈P
vp(n)! ∈ [

1,Ω(n)!]. (8)

Hence, for completely multiplicative α, we formally obtain

F(Pα)f =
∞∑

r=0

arP
r
αf =

∞∑
r=0

ar

∑
Ω(n)=r

B(n)α(n)f ◦ ϕn

=
∑
n∈S

aΩ(n)B(n)α(n)f ◦ ϕn = TaΩBαf, (9)

which we may call the P -expansion of the convolution transform T . Let us briefly consider the
problem of convergence.

Lemma 2. Let w : S → [0,+∞) satisfy w(p1) · · ·w(pr) � w(p1 · · ·pr) for all primes pi . Given
α : S → R with |α| � w, and f ∈ Lϕ(X,w), the series defining the iterates P r

αf (x) are ab-
solutely convergent for all r � 0 and we have the estimates

∥∥P r
αf (x)

∥∥ �
∑

Ω(n)=r

∑
(p1,...,pr )∈P

r

p1···pr=n

w(p1) · · ·w(pr)
∥∥f

(
φ(n, x)

)∥∥

�
∑

Ω(n)=r

B(n)w(n)
∥∥f

(
ϕ(n, x)

)∥∥ � r!
∑

Ω(n)=r

w(n)
∥∥f

(
ϕ(n, x)

)∥∥ < ∞.
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Proof. Induction on r . �
Examples of weights w satisfying the hypotheses of Lemma 2 include completely multiplica-

tive w, e.g. w = |α| for completely multiplicative α, but also functions such as w(n) = B(n) or,
over N, the function w(n) = 2n, which are far from being completely multiplicative.

Corollary 6. If α is completely multiplicative and f ∈ Lϕ(X,B|α|), then

(I − Pα)−1f (x) =
∞∑

r=0

P r
αf (x) =

∑
n∈S

B(n)α(n)f
(
ϕn(x)

) = TBαf (x),

(I + Pα)−1f (x) =
∞∑

r=0

(−1)rP r
αf (x) =

∑
n∈S

(−1)Ω(n)B(n)α(n)f
(
ϕn(x)

)
= TBλαf (x), (10)

where λ(n) = (−1)Ω(n) is the Liouville function.

Proof. Consider the operator F(Pα) corresponding to F(T ) = 1 ± T . Its inverse will be G(Pα),
given by the geometric series G(T ) = ∑∞

r=0(±T )r . If f ∈ Lϕ(X,B|α|), then by Lemma 2, the
iterates P r

αf are all defined and satisfy
∑∞

r=0 ‖P r
αf (x)‖ �

∑
n∈S B(n)|α(n)|‖f (ϕ(n, x))‖ < ∞.

It is straightforward to check that this also implies the absolute convergence of all the series
involved in defining both g = F(Pα)f = f ± Pαf as well as the inverse transform G(Pα)g,
and guarantees that the inversion formula f = G(Pα)g holds. In addition, if α is completely
multiplicative, the formal P -expansions (9) are true operator equalities. �

The Liouville function λ is completely multiplicative. The inversion relation given by the
functional calculus is equivalent to that for the transform T , namely

T −1
Bα = TB−1α = I − Pα, T −1

Bλα = TB−1λα = I + Pα.

We can deduce from the first relation that the inverse of B is B−1(1) = 1, B−1(p) = −1 if p is
prime and B−1(n) = 0 if n is composite, for example by applying the formula in the case X = S

with the product flow, to the delta functions δa for a ∈ S (see below for a full description of the
notation). This can also be proved formally in A by expanding (δ − 1P)−1 in a geometric series,
where 1P denotes the characteristic function of the primes, revealing the arithmetical formula
behind (10). Thus B−1λ = B−1μ is the function we called β at the beginning of this section.
Note that Pα−1 = Pαμ = −Pα since μ = −1 on primes. Hence also TBλα = (I − Pαμ)−1 and
TBα = (I +Pαμ)−1, with the corresponding P -expansions valid for the same f since |αμ| � |α|.

5. Applications

We now turn to a survey of interesting applications of inversion formulas, old and new, from
the point of view of flows on arithmetical semigroups S. Let us establish some notation and
review frequently used properties. ι will denote the identity function in various contexts. For
a ∈ S, δa is the delta function at a, that is, δa(a) = 1 and δa(n) = 0 if n �= a. We write δ = δ1,
which is the convolution unit. Recall that δa ∗ δb = δab (a �→ δa embeds S in the monoid ring
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R[S]). In general f ∗ δa(n) is 0 unless a | n, in which case it is f (n/a). For a subset A ⊆ S, 1A

is the characteristic function of A, that is, 1A = 1 on A and 1A = 0 on the complement S \ A.
Thus δa = 1{a} and 1 = 1S . One has 1A ∗ δa = 1aA where aA = {ax: x ∈ A}. For a ∈ S, let
〈a〉 = {ak: k � 0} be the submonoid of S generated by a. By unique factorization, 〈a〉 is infinite,
isomorphic to Z+, for a �= 1.

Example 1 (The classical inversion formulas). The Möbius inversion formula most often receiv-
ing that name is the relation g = 1 ∗ f , f = μ ∗ g in A(N,R):

g(m) =
∑
n|m

f (n) ⇐⇒ f (m) =
∑
n|m

μ(n)g

(
m

n

)
. (11)

It may also be deduced from the case S = N, X = R+, ϕ(x,n) = x/n, α = 1 of (3),

g(x) =
∞∑

n=1

f

(
x

n

)
⇐⇒ f (x) =

∞∑
n=1

μ(n)g

(
x

n

)
. (12)

Remark 5 is relevant here. Since under the flow x/n, the orbit of any x > 0 has limit 0, functions
with support bounded away from 0 yield finite sums. Thus (11) follows from (12) by restricting
to functions on R+ with support in N.

As mentioned in the introduction, the most commonly encountered N-flows on R or R+, nx,
x/n, xn, x1/n, are all conjugate. For example, nx and x/n are conjugate via h(x) = 1/x and nx

and xn are conjugate via h(x) = exp(x).
These examples may all be considered as variants of the action π of the semigroup (R, ·,1) on

itself by multiplication, πa(x) = ax, pulled back to N by a completely multiplicative arithmetical
function α : N → R and conjugated by a real function h, resulting in the flow h(α(n)h−1(x)).
Taking α(n) = nb for b ∈ R∗ results in the flow nbx and its exponential conjugate xnb

, which for
b = 1,−1 comprise the classical ones above.

Cesàro [6] noted similar variations of the flow on X = R given by ϕ(n, x) = x + b logα(n),
which is the logarithmic conjugate of the flow nbx pulled back by a completely multiplicative
function α. These do not form part of the usual repertoire of classical inversion formulas.

Example 2 (Flows on arithmetical functions). If we give the commutative ring R the trivial
valuation, the ring A = A(S,R) of R-valued arithmetical functions on S becomes a complete
normed R-algebra, and we can take M = A as R-module. An example of an S-flow on A is
ϕs(f ) = δs ∗ f. Thus if α ∈ A and Φ : A → A, we have α �ϕ Φ : A → A defined by (α �ϕ

Φ)(g) = ∑
s∈S α(s)Φ(δs ∗ g). Convergence is “formal,” with respect to the order function on A.

Now, any function f ∈ A defines a function f∗ : A → A by f∗(g) = f ∗ g (this is the regular
representation). Thus

(α �ϕ f∗)(g) =
∑
s∈S

α(s)f ∗ δs ∗ g =
(∑

s∈S

α(s)f ∗ δs

)
∗ g

and hence for functions f ∈ A, the ϕ-convolution restricts to the action α�f = ∑
s∈S α(s)f ∗δs,

which is exactly α ∗ f , given that (f ∗ δs)(x) = 0 unless s | x, when it is f (x/s). This justifies
calling � a convolution operation, as well as generalizing the comment made in Example 1.
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Example 3 (Multiplicative inversion formulas). The multiplicative version of (11), g(m) =∏
n|m f (n) if and only if f (m) = ∏

n|m g(n)μ(m/n), makes sense in a “multiplicative” abelian
group M considered as a Z-module. For example, in M = C∗ or, when computing the nth
cyclotomic polynomial, in the multiplicative group M = Q(z)∗, yielding Φm(z) = ∏

n|m(zn −
1)μ(m/n).

In general, using the exponential notation mr instead of the additive notation rm for the R-
module M will give us formulas involving infinite products of the form

∏
n∈S f (ϕ(n, x))α(n).

When there is an exponential map, such as for exp : C → C∗, we can relate the convergence
of such infinite products to infinite sums (see for instance Möbius’ product expansion of the
complex exponential in Example 9).

Example 4 (Iterative flows). Let β be a non-negative completely additive function (i.e. β(nm) =
β(n) + β(m)), and h : X → X any function. Then the iterates of h by β define a flow ϕ(n, x) =
h◦β(n)(x). If h is invertible, we may drop the requirement that β be non-negative. Using Ω(n)

we have ϕ1 = ι and ϕp = h for all primes p. Thus this is the general type of prime-independent
flow, where the functions ϕp do not depend on p. The corresponding transform is (α � f )(x) =∑

n∈S α(n)f (h◦Ω(n)(x)). Such a sum, when absolutely convergent, may be grouped according
to the value of Ω(n), dividing it into other (infinite) sums, as in Section 4.

Example 5 (Dirichlet series). For R = C with the usual absolute value, taking α(n) = N(n)−s

(s ∈ C) in Theorem 3 gives parametric families of Dirichlet series over the arithmetical semi-
group S. If Δ > 0 is such that

∑
n∈S N(n)−σ < ∞ for σ > Δ, and f : X → C is such that

|f (ϕ(n, x))| � ck(x)N(n)k for some real k and ck(x) � 0, then the Dirichlet series Df (x, s) =
(N−s � f )(x) = ∑

n∈S N(n)−sf (ϕ(n, x)) will converge absolutely for Re(s) > k + Δ.
The well-known property that the pointwise product of the Dirichlet series of two arithmetical

functions is the Dirichlet series of their convolution generalizes as follows: for f : X → M and
a fixed x ∈ X, the map n �→ f (ϕ(n, x)) defines an arithmetical function fx : S → M . The ϕ-
convolution of α with f is

(α � f )(x) = 〈α,fx〉

where 〈,〉 is the pairing between R- and M-valued functions given by

〈,〉 : A(S,R) × A(S,M) → M, 〈α,f 〉 =
∑
n∈S

α(n)f (n), (13)

defined whenever this sum is convergent. If M is a complete normed R-algebra with product
denoted by · and α : S → R is completely multiplicative, then for functions f,g ∈ Lϕ(X, |α|) we
have

(α � f )(x) · (α � g)(x) =
∑
n∈S

α(n)fx(n) ·
∑
m∈S

α(m)gx(m) =
∑
l∈S

α(l)(fx ∗ gx)(l)

where the right-hand side converges absolutely. Equivalently,

〈α,fx〉 · 〈α,gx〉 = 〈α,fx ∗ gx〉. (14)
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When X = S and the flow is the action π of S on itself by left multiplication, π(s, t) = st ,
then we are considering arithmetical functions f : S → M , and we have fx(n) = f (nx), so that
f1 = f and (14) at x = 1 reduces to 〈α,f 〉 · 〈α,g〉 = 〈α,f ∗ g〉. For S = N, R = M = C and
α(n) = n−s , we recover the classical property, which is the source of many interesting identities
involving the Riemann zeta function.

An example of inversion of such parametric Dirichlet series is the transform pair g(x) =∑
n�x1/s n−sf (n−sx), f (x) = ∑

n�x1/s μ(n)n−sg(n−sx) and its variants using other completely
multiplicative functions [19, §6.3, pp. 222–223]. A different kind arises from the N-flow on
X = [−1,1] given by conjugating multiplication by the cosine. One obtains the Chebyshev poly-
nomials, ϕn(x) = cos(n arccosx) = Tn(x). The transform pair

g(x) =
∞∑

n=1

n−sf
(
Tn(x)

)
, f (x) =

∞∑
n=1

μ(n)n−sg
(
Tn(x)

)

has been studied first, to our knowledge, in [11]. A simple condition guaranteeing convergence
for Re(s) > 1 is the boundedness of f and g. Chebyshev [8] himself studied inversion of Fourier
series, which we mention in Example 10.

Example 6 (One prime). If S = 〈p〉 = {pn: n � 0}, it is isomorphic to (Z+,+,0). The ring of
arithmetical functions A(S,R) is isomorphic to the ring of formal power series R[[T ]], where
α : S → R corresponds to F = ∑∞

n=0 α(pn)T n. Thus Dirichlet convolution in A is the standard
Cauchy product of series, and α−1 corresponds to 1/F . A flow is determined by choosing any
function h : X → X and declaring ϕp = h. Then ϕpn is the n-fold iterate of h, which we will
denote by h◦n. The inversion formula then is

g(x) =
∞∑

n=0

anf
(
h◦n(x)

)
, f (x) =

∞∑
n=0

bnf
(
h◦n(x)

)
(15)

where
∑

n anT
n ·∑n bnT

n = 1. This is quite close to Möbius’ original idea (see also Example 9).
Furthermore, a completely multiplicative arithmetical function α corresponds to a sequence of
the form an = an, i.e. to the series F = (1 − aT )−1, and since the Möbius function of S is
μ(1) = 1, μ(p) = −1 and μ(pn) = 0 for n > 1, inversion amounts to recovering f from g as a
telescoping series: f (x) = g(x) − ag(h(x)). For example, (11) in Z+, where the “divisors” of n

are the integers 0 � k � n, is g(n) = ∑n
k=0 f (k), f (n) = g(n) − g(n − 1).

The case h(x) = bx for X = R and b �= 0,±1, where h◦n(x) = bnx, is mentioned in [15] as
a special case of another formula. In general, h can have finite (compositional) order m. The
transform

∑
n anρ

nf (h◦n(x)) where |ρ| < 1, an is periodic of period m, and h has order m, cor-
responds to a series of the form F = (1−ρmT m)−1P(T ) where P is a polynomial of degree less
than m. If the mth roots of unity act on X, the inversion formula for an = 1, h(x) = ωx, where
ωm = 1, is equivalent to g(x) = ∑m−1

n=0 ρnf (ωnx) and f (x) = (1 − ρm)−1(g(x) − ρg(ωx)).

These convolutions have long been used to generate “pathological” functions. For exam-
ple, f (x) = ∑∞

n=1 bn cos(πanx) is Weierstrass’ nowhere differentiable function. Similarly,
h(x) = xb , when this makes sense in X, gives h◦n(x) = xbn

. For X = C the transform g(z) =∑∞
n=0 f (z2n

), f (z) = g(z) − g(z2) for f (z) = z is familiar as an example of a power series
whose natural boundary is the unit circle. What makes both these examples work are the density
of orbits under the flow.
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For any finite or countable set P of primes, we have the analogous interpretation with formal
power series in the same number of indeterminates. Classifying flows is more complicated since
each prime can act via a different self-map of X, as long as they commute. Nevertheless, this
interpretation provides a universal algebraic model of Möbius inversion (see also Examples 8
and 11).

Example 7 (The Iseki and Tatuzawa inversion formula). The following inversion formula due
to K. Iseki and T. Tatuzawa, is used to prove Selberg’s asymptotic formula, which is a central
point in the Erdős–Selberg elementary proof of the prime number theorem ([7, Chapter 1, p. 3]
or [1, §4.11, Theorem 4.17]):

g(x) =
∑
n�x

f

(
x

n

)
log(x) �⇒ f (x) log(x) +

∑
n�x

f

(
x

n

)
Λ(n) =

∑
n�x

μ(n)g

(
x

n

)

where supp(f ) ⊆ [1,+∞) and Λ(n) = ∑
d|n μ(d) log n

d
= μ ∗ log(n). Theorem 1 provides

a quick proof of this. Simply observe that for the N-flow ϕ(n, x) = x/n on R+ we have
g = log � f + 1 � (log · f ), where · denotes the pointwise product. Then

μ � g = μ � (log � f ) + μ � (
1 � (log · f )

) = (μ ∗ log) � f + (μ ∗ 1) � (log · f )

= Λ � f + δ � (log · f ) = Λ � f + log · f,

which is the Iseki–Tatuzawa formula.

Example 8 (Direct sums). The finite or countably infinite algebraic direct sum of arithmetical
semigroups is again an arithmetical semigroup. Indeed, let {Si}∞i=1 be a family of arithmetical
semigroups, where Si has unit 1i , primes Pi , norm Ni and degree map ∂i . Identify S = ⊕

i Si

with the space of sequences s = (si) such that si = 1i for all i � 0. Define the primes P of S

to be the sequences s such that for some j , sj = pj ∈ Pj and si = 1i for all i �= j . Then it is
easy to check that S has unique factorization into primes. Furthermore, if δi = minpi∈Pi

∂i(pi)

then ∂(s) = ∑∞
i=1 iδ−1

i ∂i(si) defines a degree map on S as in the remark following Definition 1.
Note that in the simpler case of finite direct sums, equivalent with direct products, one can take
as norm N on S the product of the norms N(s) = ∏

i Ni (si).
Regarding Si as embedded in S, the different Si are coprime. Thus, a multiplicative (re-

spectively, completely multiplicative) arithmetical function α : S → R is a product of the form
α(s) = ∏

i αi(si), where αi : Si → R is multiplicative (completely multiplicative). In particu-
lar, the Möbius function μ of S is μ(s) = ∏

i μi(si), where μi is the Möbius function of Si .
For arithmetical functions which are products, α = ∏

i αi , β = ∏
i βi , one can easily check that

α ∗ β = ∏
i (αi ∗ βi).

Similarly, the coprimality of the Si in S implies that an S-flow ϕ on X is of the form ϕs =
ϕ

(1)
s1 ◦ ϕ

(2)
s2 ◦ · · · ◦ ϕ

(i)
si ◦ · · · , where ϕ(i) is an Si -flow on X, and the self-mappings ϕ

(i)
si commute

for all i, si . The composition is finite since ϕ
(i)
si = ϕ

(i)
1i

is the identity for i � 0. We shall say that

ϕ is the direct sum of the flows ϕ(i) and write ϕ = ⊕
i ϕ

(i).
Given an arithmetical semigroup S and an S-flow ϕ on S, on the finite direct product Sr we

have the direct product flow ϕ×r = ϕ × · · · × ϕ of r copies of ϕ. If {αi}ri=1 is a collection of
arithmetical functions on S, their product

∏
i αi is an arithmetical function on Sr and one has,

gathering by product s1 · · · sr = s,
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r∏
i=1

αi �ϕ×r f = (α1 ∗ · · · ∗ αr) �ϕ f. (16)

Extending this to countably infinite sums requires defining convolutions ∗∞
i=1αi . Whereas the

product
∏∞

i=1 αi(si) is actually finite for s = (si)
∞
i=1, the sums defining such infinite convolutions

are infinite since there are infinitely many (si) whose product is a given s. Apart from this added
difficulty, needing extra convergence hypotheses, (16) extends to the countable case.

An example of an inversion formula arising from the direct product N × N is the transform
pair g(x) = ∑∞

m,n=1 f (nαmβx), f (x) = ∑∞
m,n=1 μ(m)μ(n)g(nαmβx), where α,β > 0. This

is found in [20] along with many other such formulas which fit into our framework, providing
examples where one needs to consider different semigroups (in this case direct products) in order
to properly understand them.

As an illustration of the methods we have described, let us show how to derive formulas (8)–
(13) in [20] (denoted here by (viii)–(xiii), respectively). They use the product flow ϕ(n, x) = nx,
and are all of the type in (16), namely, they “collapse” to the one-variable case:

g(x) =
∞∑

n=1

(−1)n+1f (nx), f (x) =
∞∑

k=1

∞∑
r=1

μ(k)2r−1g
(
2r−1kx

); (viii)

f (x) =
∞∑

n=1

∞∑
m=1

∞∑
k=0

μ(n)(−1)m+12kf
(
2kmnx

); (ix)

g(x) =
∞∑

k=0

f
(
2kx

)
, f (x) =

∞∑
n=1

∞∑
m=1

μ(n)(−1)m+1 1

mn
g(mnx); (x)

f (x) =
∞∑

n=1

μ(n)

n
g(nx), g(x) =

∞∑
m=1

∞∑
k=0

(−1)m+1 1

m
f

(
2kmx

); (xi)

g(x) =
∞∑

k=0

2kf
(
2kx

)
, f (x) =

∞∑
n=1

∞∑
m=1

μ(n)(−1)m+1g(mnx); (xii)

f (x) =
∞∑

n=1

μ(n)g(nx), g(x) =
∞∑

m=1

∞∑
k=0

(−1)m+12kf
(
2kmx

)
. (xiii)

We begin by listing some convolutional identities satisfied by ε(n) = (−1)n+1 (with notation as
declared at the beginning of this section). First, ε = 1 − 2 · 12N = 1 ∗ (δ − 2δ2) so that ε−1 = μ ∗
(δ − 2δ2)

−1. Expanding in a geometric series shows (δ − 2δ2)
−1 = ∑∞

�=0 2�δ∗�
2 = ∑∞

�=0 2�δ2� =
ι · 1〈2〉. Hence ε−1 = μ ∗ ι1〈2〉. Now, for any arithmetical function f , and n = 2rk with r � 0
and k odd, we have f ∗ (δ − 2δ2)(n) = f (n) if n is odd and f (n) − 2f (n/2) if n is even, and
(f ∗ ι1〈2〉)(n) = ∑r

s=0 2r−sf (2sk). From these observations we deduce that ε−1(n) = μ(n) if n

is odd and 2r−1μ(n) if n is even, and any number of similar relations. One we shall need later
is ι ∗ ε(n) = (σ ∗ (δ − 2δ2))(n) = σ(n) − 2σ(n/2) = σ(k). Similar ones include (1 ∗ ε)(n) =
(1 − r)d(k) and (ι ∗ ε−1)(n) = φ(n) for odd n and (r + 2)φ(n) for even n, where φ is Euler’s
function.

Let us see how the formulas all follow from the relation ε ∗ μ ∗ ι1〈2〉 = δ. In our notation,
(viii) says g = ε �f , and by (16), f = (μ∗ ι1〈2〉)�g. (ix) states (ε ∗μ∗ ι1〈2〉)�f = δ �f = f .
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(x) says g = 1〈2〉 �f and by (16), f = ((μ∗ε) ·(1/ι))�g. This follows from ((μ∗ε) ·(1/ι))−1 =
(δ − 2δ2)

−1 · (1/ι) = ι1〈2〉 · (1/ι) = 1〈2〉. In this case also f (x) = g(x) − g(2x) as in Example 6,
or directly from μ ∗ ε = δ − 2δ2. (xi) is g(x) = ∑

m

∑
n(ε(m)/m) · 1〈2〉(n)f (mnx), so by (16),

g = ((ε/ι) ∗ 1〈2〉) � f and the formula follows from ((ε/ι) ∗ 1〈2〉)−1 = ((ε ∗ ι1〈2〉)/ι)−1 = (ε ∗
ι1〈2〉)−1/ι = μ/ι. (xii) says g = ι1〈2〉 �f and by (16), f = (μ∗ε)�g. Finally, (xiii) is f = μ�g

and by (16), g = (ε ∗ ι1〈2〉) � f .

Example 9 (Formal power series). Let R be any commutative domain, with the trivial valuation,
M = R[[x]] the algebra of formal power series over R, which is complete with respect to the norm
‖F‖ = e−ordx(F ), and X = m the maximal ideal, m = xM . As in Example 2, a series F ∈ M

may be identified with a function F∗ : X = m → M , in this case given by formal composition:
F∗(Φ) = F(Φ) for Φ ∈ m. A special class of N-flows ϕ on m are those given for primes p

by ϕp = Φp∗ for commuting series Φp ∈ m. For example, the exponential flow ϕn(Ψ ) = Ψ n is
given by Φp = xp and the product flow ϕn(Ψ ) = nΨ is given by Φp = px. We can then use the
identification of series with functions to define the generalized convolution of α : N → R and
F ∈ M ; namely, as a function on m, it is

(α � F∗)(Ψ ) =
∞∑

n=1

α(n)F∗
(
ϕn(Ψ )

) =
∞∑

n=1

α(n)
(
F(Φn)

)
∗(Ψ ) (Ψ ∈ m),

which is the function corresponding to the formal power series
∑∞

n=1 α(n)F (Φn), assuming
this converges in the formal topology, which essentially means either α(n) = 0 for all n � 0 or
F ∈ m and Φn → 0, as is the case for the exponential flow. Thus one can consider the relation
G(x) = ∑∞

n=1 α(n)F (xn) as G = α � F .
A nice application, from Möbius’ original paper [17], is the inversion of the logarithm over C,

−log(1 − z) = ∑∞
n=1 n−1zn to obtain z = −∑∞

n=1 n−1μ(n) log(1 − zn). Exponentiating yields
ez = ∏∞

n=1(1−zn)−μ(n)/n. These are all convergent for |z| < 1. Substituting z = p−s , where p is
prime and Re(s) > 1, gives ep−s = ∏∞

n=1(1 − p−ns)−μ(n)/n. Using the product expansion of the
Riemann zeta function and taking logarithms then gives a formula for the “prime zeta function”
due to Glaisher:

∑
p

1

ps
=

∞∑
n=1

μ(n)

n
log ζ(ns) (Re s > 1).

Another useful example is the theory of Lambert series. Here we consider L = x
1−x

=∑∞
n=1 xn, thus L = 1 � I , where now I denotes the identity series I (x) = x. The Lambert series

of α is
∑∞

n=1 α(n)L(xn), which is precisely the convolution α � L with respect to the expo-
nential flow. We shall denote Ln = L(xn). The basic relationship expressing a Lambert series in
powers of x, namely, identities of the form α � L = β � I , is succinctly given by Theorem 1 as
α � (1 � I ) = (α ∗ 1) � I = β � I , equivalent to α ∗ 1 = β , the standard relation.

Let us show how Theorem 1 gives quick unified proofs of some elliptic function identities (in
Lambert series form) used to derive Jacobi’s formulas on representations as sums of four squares.
We have the pair of identities, due to Ramanujan ([12, §3.7 and 3.8] or [13, §20.11–12]):

∞∑
Ln(1 + Ln) =

∞∑
nLn,

∞∑
(−1)n+1Ln(1 + Ln) =

∞∑
(2n − 1)L2n−1.
n=1 n=1 n=1 n=1
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Since L(1 + L) = ι � I , the first identity follows from 1 � (ι � I ) = (1 ∗ ι) � I = ι � (1 � I ) =
ι � L. The second states that ε � (ι � I ) = ιχ � L where ε(n) = (−1)n+1 and χ is the Dirichlet
character modulo 2, i.e. the characteristic function of the odd positive integers. This is equivalent
to ε ∗ ι = ιχ ∗ 1. The right-hand side evaluated at n is obviously the sum of the odd divisors of n,
which we denote by σ ′(n). In Example 8, we proved that the left-hand side is also equal to σ ′.
Similarly, Jacobi’s identity [12, §3.7 and 3.8]

∞∑
n=1

nxn

1 + (−x)n
=

∑
n�≡0 mod 4

nLn

can be proved by setting L∗ = x(1+x)−1 = ε�I . The left side is ιχ �L+ ι(1−χ)�L∗ = (ιχ ∗
1+(ι− ιχ)∗ε)�I and since ε = 2χ −1 and ε ∗ ι = ιχ ∗1 = σ ′, this reduces to (3σ ′ −2χσ)�I .
The right-hand side is α � L = (α ∗ 1) � I for α(n) = 0 if 4 | n and 1 otherwise. Thus (α ∗ 1)(n)

is the sum of the divisors of n not divisible by 4, which we denote by σ ′′. Jacobi’s identity then
reduces to 3σ ′ − 2χσ = σ ′′, which is easily verified by considering odd and even n separately.

Example 10 (Möbius inversion of Fourier series). Let S = N,R = M = C and X = R/Z, rep-
resented by [0,1]. Let e(x) = e2πix . The Fourier series of an arithmetical function α : N → C is
α̂ = α � e where the flow is ϕ(n, x) = nx. However, the natural setting for Fourier series is the
additive semigroup Z+, since ex(n) = e(nx) satisfies ex(n + m) = ex(n)ex(m) and, in the nota-
tion of Example 5, α̂(x) = 〈ex,α0〉, hence by (14), α̂ · β̂ = α̂ � β where � denotes convolution
on Z+, (α � β)(n) = ∑

l+m=n α(l)β(m). One can also extend this to the additive group Z, i.e.
α,β can be “doubly infinite” sequences Z → C, but then care must be taken with convergence,
as Z is no longer an arithmetical semigroup and the sum defining the convolution is infinite. The
interplay between the multiplicative and additive structures on N is expressed by Theorem 1,
which says in this case that

α � β̂ = α � (β � e) = (α ∗ β) � e = α̂ ∗ β

where ∗ continues to denote multiplicative convolution. Thus δ̂ = e and Möbius inversion ex-
presses the exponential as e = α−1 � α̂.

Analogous results hold for q-expansions, taking q = e2πiz and z ∈ X = {z ∈ C: Im z > 0}.
For instance, using the notation of Example 9, since 1̂(z) = L(q), the q-Lambert series of a
function α is α � 1̂, which is the Fourier transform of α ∗ 1. Thus, the relation e = μ � 1̂ is the
well-known expansion q = ∑∞

n=1 μ(n)L(qn), as an analytic function. The formal result dates at
least as far back as Möbius [17].

Recently, in [10] Möbius inversion of the Fourier transform on the n-dimensional torus is
studied and related to lattice problems in physics. Chebyshev [8] originally considered Möbius
inversion of the Fourier series of the square and triangular waves, obtaining the value of some
arithmetical sums. Much later, the Fourier series of the square wave was used in [18] to prove
there are more quadratic residues than non-residues between 1 and (p−1)/2 when p ≡ 3 mod 4.
Thinking along these lines, we have obtained a curious factorization for the real part of a Dirichlet
L-series. Namely, let S and T denote the period 1 extensions from [0,1) to R of the functions
S = 1(0,1/2) −1(1/2,1) and T (x) = 4x1[0,1/4) + (2−4x)1[1/4,3/4) + (4x −4)1[3/4,1). Their Fourier
series are
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S(x) = 4

π

∑
odd n

sin(2πnx)

n
= 4

π
ρχ2 � sin(2πx),

T (x) = 8

π2

∞∑
n=0

(−1)n
sin(2π(2n + 1)x)

(2n + 1)2
= 8

π2
ρ2χ4 � sin(2πx), (17)

where ρ(n) = 1/n, χ2(n) = χ4(n) = 0 if n is even and χ2(n) = 1, χ4(n) = (−1)(n−1)/2 if n is
odd. χ2 and χ4 are Dirichlet characters. Inverting gives

sin(2πx) = π

4

∞∑
n=1

μχ2(n)

n
S(nx) = π2

8

∞∑
n=1

μχ4(n)

n2
T (nx). (18)

Substituting rational values x = k/m yields sums reminiscent of Dirichlet L-series. However,
χ2(n)S(n/m) is only a Dirichlet character modulo m for m = 3,4,6,8 (complete multiplicativity
fails in all other cases), and T (n/m) is not constant in absolute value. There is a relation with
Dirichlet L-series, but it is not quite so straightforward. Let us illustrate what happens for m = 5.
Denote the Dirichlet series of f : N → C by Df (s). Letting λ = sin 2π

5 = √
((5 + √

5 )/8) and

λ∗ = sin 4π
5 = √

((5 − √
5 )/8), by substituting x = 1/5,2/5 in (17) and (18), one obtains

Dα(1) = 2π

5
λ∗, Dα∗(1) = 2π

5
λ, Dμα(1) = 4

π
λ, Dμα∗(1) = 4

π
λ∗,

Dβ(2) = π2

25

(
4λ∗ + 3λ

)
, Dβ∗(2) = π2

25

(
4λ − 3λ∗),

Dμβ(2) = 20

π2
λ, Dμβ∗(2) = 20

π2
λ∗, (19)

where α,α∗, β,β∗ are the arithmetical functions given by α(n) = α∗(n) = 0 if gcd(n,10) > 1,
β(n) = β∗(n) = 0 if gcd(n,20) > 1, and

α(n) =
(

1 3 −3 −1
1 −1 1 −1

)
mod 10, α∗(n) =

(
1 3 −3 −1
1 1 −1 −1

)
mod 10,

β(n) =
(±1 ±3 ±7 ±9

2 1 −1 −2

)
mod 20, β∗(n) =

(±1 ±3 ±7 ±9
1 −2 2 −1

)
mod 20,

with residue classes on the first row and the corresponding values on the second. These are clearly
not multiplicative, although α(n)α∗(n) = ( n

5 )ε10(n) and β(n)β∗(n) = 2( n
5 )ε10(n), where ( n

5 ) is
the Kronecker symbol and ε10 is the principal character modulo 10. The explanation of (19) lies
in the convolution properties of these functions. By factoring modulo 10 one can show that for
any arithmetical function f one has (f α ∗ f α∗)(n) = 0 unless n ≡ ±1 mod 10, in which case it
is respectively ±(f ∗ f )(n). In terms of the Dirichlet character

ξ(n) =
(

0 1 2 3 4
0 1 i −i −1

)
mod 5
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(which satisfies ξ(n)2 = ( n
5 )), this means that if f is real-valued, then

f α ∗ f α∗ = (f ∗ f ) · Re(ξε10) = Re
(
(f ∗ f ) · ξε10

) = Re(f ξε10 ∗ f ξε10),

which translates into the following identity of Dirichlet series

Df α(s) · Df α∗(s) = ReDf ξε10(s)
2 (s ∈ R) (20)

when these series are convergent. Thus{
Dα(s) · Dα∗(s) = ReL(ξε10, s)

2,

Dμα(s) · Dμα∗(s) = ReL(ξε10, s)
−2 (s ∈ R, s � 1), (21)

which may be verified for s = 1 using (19) and computing L(ξε10,1)2 = π2(2−i)

10
√

5
. Similar (though

lengthier) computations yield

Dfβ(s) · Dfβ∗(s) = 1

2
Re(4 + 3i)Df χ(s)2 (s ∈ R),{

Dβ(s) · Dβ∗(s) = 1
2 Re(4 + 3i)L(χ, s)2,

Dμβ(s) · Dμβ∗(s) = 1
2 Re(4 + 3i)L(χ, s)−2 (s ∈ R, s � 1) (22)

for the Dirichlet character χ modulo 20 given by

χ(n) =
(±1 ±3 ±7 ±9

1 i −i −1

)

which may be verified for s = 2 using (19) and L(χ,2) = π2

25 (2 − i)(λ + iλ∗).

Example 11 (Prime sums in the monoid of words). Let W(Σ) denote the free monoid over
a set Σ , realized as the set of finite “words” or “strings” in the “alphabet” Σ , that is, finite
sequences of elements of Σ , with product given by juxtaposition and neutral element the null
string or empty word ∅. Its abelianization W(Σ)ab is the free abelian monoid over Σ , which
is isomorphic to the direct sum of |Σ | copies of (Z+,+,0). The abelianization homomorphism
is the map that counts letter frequencies, namely for a word w we let fw(s) = ords(w) be the
number of times the letter s ∈ Σ appears in w.

If Σ is countable, W(Σ)ab is an arithmetical semigroup with set of primes equal to Σ , the
letters. Using this model, we may also think of W(Σ)ab as the set of sequences f : Σ → Z+
with f(s) = 0 for all but finitely many s ∈ Σ , representing the possible letter frequencies. The
primes are the delta functions δs, s ∈ Σ . Unique factorization is the representation f = ∑

s f(s)δs .
The Möbius function μ is 0 on words with a repeated letter and (−1)�(w) otherwise, where
�(w) denotes the length of a word. Equivalently, on frequencies, μ(f) = 0 if some f(s) > 1 and
otherwise μ(f) = (−1)|f| where |f| = ∑

s f(s). Clearly |fw| = ∑
s ords(w) = Ω(w) = �(w). Note

however that if Σ is infinite, |f| is not a degree map in the sense of Definition 1, since it does
not satisfy the finiteness condition. Indeed |δs | = 1 for all s. Instead, we need a weighted degree
such as ∂f = ∑∞

i=1 if(si), if Σ = {si}∞i=1 (see Example 8).
Let M be any commutative monoid, written multiplicatively. Any function a : Σ → M

extends uniquely to a homomorphism A : W(Σ) → M. For a word w = (s1, . . . , s�) of
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length � � 1, we have A(w) = a(s1) · · ·a(s�), and A(∅) = 1. In terms of frequencies, A(f) =∏
s a(s)f(s). Since M is abelian, A factors through the abelianization W(Σ)ab.
Now, suppose ψ is an M-flow on a space X, which we will denote by ψ(t, x) = t ⊗x. Pulling

back via A gives the flow ϕ(w,x) = A(w)⊗x of W(Σ)ab on X. Consider the “sum over primes”
operator Pα of Section 4, for the arithmetical semigroup W(Σ)ab and an arithmetical function
α : W(Σ)ab → R. Since the primes of W(Σ)ab are the elements of Σ , the transform pair (10)
for I + Pα is

g(x) = (I + Pα)f (x) = f (x) +
∑
s∈Σ

α(s)f
(
a(s) ⊗ w

)
,

f (x) = (I + Pα)−1g(x) =
∞∑

�=0

(−1)�P �
αg(x) (23)

where we have, by (6),

P �
αg(x) =

∑
(s1,...,s�)∈Σ�

α(s1) · · ·α(s�)g
((

a(s1) · · ·a(s�)
) ⊗ x

)
. (24)

Note also that an arbitrary function α : Σ → R is a function on the primes of W(Σ)ab and hence
has a unique completely multiplicative extension to an arithmetical function on W(Σ)ab. Hence
we do not lose much generality if we suppose α to be completely multiplicative. In that case
grouping words by length, i.e. by the value of Ω(w), as in (7), which for frequencies means
grouping by the degree |f|, results in the expression

P �
αg(x) =

∑
|f|=�

|f|!
f! α(f)g

(
A(f) ⊗ x

)
(25)

where f! = ∏
s f(s)!. Recall then (10), namely (I + Pα)−1 = TBλα where λ = (−1)Ω .

This example was inspired by the following inversion formula from [15]:

g(x) =
∞∑

n=1

f (anx) ⇐⇒ f (x) = g(x/a1) +
∞∑

n=1

gn

(
x/an+1

1

)
,

gn(x) = (−1)n
∞∑

m1=2

· · ·
∞∑

mn=2

g(am1 · · ·amnx), (26)

where {an} ⊂ R∗ is any sequence with an �= am for n �= m. Reindexed and normalized with
a0 = 1, it is the case Σ = N,M= R∗,ψ(t, x) = tx,α = 1 of (23), with g� = (−1)�P �

1 g.
It may happen that Σ = S is itself an arithmetical semigroup, and a : S → M is a monoid

homomorphism. In that case the map π sending a word w = (s1, . . . , s�) to the S-product
s1 · · · s� ∈ S is a monoid homomorphism π : W(S)ab → S, and the extension A factors through it:
A = a ◦ π . The restriction of the flow ϕ to S is a flow of S on X. However, now a(1) = 1, hence
all words of the form w = (1, . . . ,1) and any length act as the identity. Thus

∑
�(−1)�α(1)�g(x)

is a subseries of the total series
∑

�(−1)�P �
αg(x), which makes absolute convergence impossible

when |α(1)| � 1, except in the trivial case f = g = 0. This happens for completely multiplicative
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functions α. One way to restore non-triviality is to eliminate the redundancy A(∅) = a(1) = 1.
We may do this by considering the set Σ = S \ {1} and applying (23) to Σ instead of S (com-
pare this to (26) with the summations over integers greater than or equal to 2). Assuming only
α(1) = 1,

(I + Pα)f (x) = f (x) +
∑
s∈Σ

α(s)f
(
a(s) ⊗ x

) =
∑
s∈S

α(s)f
(
a(s) ⊗ x

) = Tαf (x)

where Pα is the operator with respect to W(Σ)ab but Tα is the operator with respect to S and
the restricted flow ϕ(s, x) = a(s) ⊗ x. Its inversion formula must then be T −1

α = Tα−1 . Thus the
method of P -expansions detailed in Section 4 yields the same inversion formulas as in Section 3.

Actually, to fully prove the equivalence, we need to be able to recover the inversion
formula via P -expansions. This can be done as follows. Since a is a homomorphism, we
can group words w with the same S-product together in (24), which becomes P �g(x) =∑

s∈S(
∑

s1···s�=s,si �=1 α(s1) · · ·α(s�))g(a(s) ⊗ x). The inner sum, without the restrictions si �= 1,

would be the �-fold convolution α∗�. With the restrictions, by the inclusion–exclusion formula,
since α(1) = 1, it is

∑�
k=0(−1)k

(
�
k

)
α∗(�−k) = (α − δ)∗� (this is also easily checked directly by

observing that
∏�

i=0(α(si) − δ(si)) = 0 unless all si �= 1, in which case it is
∏�

i=0 α(si)). Hence
g�(x) = (−1)�P �g(x) = ∑

s∈S(δ − α)∗�(s)g(a(s) ⊗ x) and so inversion reduces to exchanging
sums: f (x) = ∑∞

�=0
∑

s∈S(δ − α)∗�(s)g(a(s) ⊗ x) = ∑
s∈S

∑∞
�=0(δ − α)∗�(s)g(a(s) ⊗ x) =∑

s∈S(δ − (δ − α))−1(s)g(a(s) ⊗ x) = ∑
s∈S α−1(s)g(a(s) ⊗ x) provided, as usual, that the

appropriate convergence conditions hold.

Remark 6. Grouping words w = (s1, . . . , s�) with equal S-product π(w) is stronger than group-
ing by letter frequencies as in (25). This is so due to choosing Σ = S \ {1}, which makes these
elements primes in W(Σ)ab, whereas S retains its own primes P. If we choose Σ = PS , the
primes of the arithmetical semigroup S, then W(Σ)ab is isomorphic to S via the map π . Indeed,
this statement is equivalent to unique factorization in S. Hence this example is also universal,
in the sense that W ab represents any arithmetical semigroup. Note however that the specific
arithmetic information carried by S is lost in this more abstract point of view, especially the
enumeration and distribution data on primes contained in the norm or degree functions, which is
precisely the object of study in abstract analytic number theory.
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