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Abstract

In this paper, a generalization of a classical result by Gander concerning the characterization
of third order methods, is addressed. New and classical methods are included in the family.
In particular, a new construction of the well-known Chebyshev method is presented. Other
methods, based on exponential and logarithmic fittings respectively, are rediscovered too. The
proposed methods have a local cubic order of convergence and can be competitive with other
third-order methods in the literature, as can be seen from the numerical examples presented.
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1 Introduction

The solution of nonlinear equations is a task that has attracted the effort of numerous re-
searchers for a long time, and still continues. Our goal is to find the roots of an equation of the
form

f(x) = 0 (1)
on a given domain D, where f(x) : D ⊆ R −→ R is a sufficiently differentiable function.

The most common method to do that is Newton’s method, which approximates successively
in the vicinity of an initial point the function f(x) by the tangent line (for an unconventional for-
mulation of Newton’s method see [12, 13, 14, 17]). Other methods based on geometric approx-
imations are the well-known Euler’s method [1], which considers approximations by parabolas,
and the Halley’s method [6, 10], also called the method of tangent hyperbolas, or many others
that appear in [3]. It is expected that the methods will work better when the characteristics of the
function f(x) are taken into account. This is a common approach in the solution of initial-value
problems in differential equations, and has given rise to the so-called adaptedmethods. Following
this approach, in this context we are going to develop twomethods that approximate the function
f(x) adapted by an exponential function or by a logarithmic function, in both cases containing
three parameters.

The paper is organized as follows. In Section 2, we present a modification of a classical result
given by Gander in 1985 [7] for the construction of third order methods. The local convergence
analysis of some of the methods with asymptotic error constants is discussed in Section 3. Also
an initial approach concerning the study of the dynamics of the methods has been presented,
considering the quadratic polynomial p(z) = z2 − 1 with z ∈ C. Implementation details together
with some numerical examples are considered in Section 4, to show the efficiency of the proposed
methods. Finally, some conclusions of the paper are discussed in Section 5.

2 Derivation of a new family of third order iterative methods

In a classical result given by Gander in 1985 [7] third order methods for solving nonlinear
equations f(x) = 0 are characterized. Actually, it is shown that they are of the form xn+1 = G(xn)
for

G(x) = x−H(Lf (x))
f(x)

f ′(x)
, (2)

where H is a twice differentiable function around x = 0 that satisfies the conditions H(0) = 1,
H ′(0) = 1/2 and |H ′′(0)| <∞ and Lf (x) is defined as the quotient

Lf (x) =
f(x)f ′′(x)

f ′(x)2
, (3)

that usually appears in many expressions of high-order iterative methods.

In view of the expressions that will be obtained for the methods in this paper (see for instance
(9) and (12)), and taking into account Gander’s result, we can formulate a convergence result for
methods of the form xn+1 = S(xn)with

S(x) = x+ T (Lf (x))
f ′(x)

f ′′(x)
, (4)
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where T is an appropriate function as stated in the following theorem.
Theorem 2.1. Let α be a simple zero of the equation f(x) = 0 that satisfies f ′′(α) 6= 0. Let us assume
that T : R → R is a differentiable enough function around zero that satisfies T (0) = 0, T ′(0) = −1 and
T ′′(0) = −1. Then, the iterative method given by xn+1 = S(xn) where S is defined in (4), is convergent
to α with at least order three.

Proof. The result follows as an application of the Schröder-Traub’s theorem. Actually, it is a straight-
forward calculation that for simple roots, Lf (α) = 0. Then S(α) = α if T (0) = 0. In addition, if
we introduce the notation

Lf ′(x) =
f ′(x)f ′′′(x)

f ′′(x)2
,

it can be deduced the following expression for the first derivative of S(x) defined in (4)

S′(x) = 1 + T (Lf (x))
f ′′(x)2 − f ′(x)f ′′′(x)

f ′′(x)2
+ T ′(Lf (x))L

′
f (x)

f ′(x)

f ′′(x)
.

Note that

L′f (x)
f ′(x)

f ′′(x)
=

(f ′(x)f ′′(x) + f(x)f ′′′(x))f ′(x)2 − 2f(x)f ′(x)f ′′(x)2

f ′(x)4
f ′(x)

f ′′(x)

= 1 +
f(x)f ′′′(x)

f ′(x)f ′′(x)
− 2Lf (x) = 1 +

f(x)f ′′(x)

f ′(x)2
f ′(x)f ′′′(x)

f ′′(x)2
− 2Lf (x)

= 1 + Lf (x)Lf ′(x)− 2Lf (x).

Therefore, we have

S′(x) = 1 + T (Lf (x))(1− Lf ′(x)) + T ′(Lf (x))(1− 2Lf (x) + Lf (x)Lf ′(x)),

and thus S′(α) = 1 + T ′(0) = 0 by the hypothesis.

To reach cubic convergence, S′′(α)must vanish. After some calculations we obtain that

S′′(α) = T ′(0)L′f (α)(1− Lf ′(α)) + T ′′(0)Lf ′(α) + T ′(0)(−2L′f (α) + L′f (α)Lf ′(α)))

f ′′(α)

f ′(α)
(T ′′(0)− T ′(0)) = 0,

by the hypothesis. This completes the proof.
Remark 2.1. As an application of this result, we note that iterative methods in the form

xn+1 = xn −

Lf (xn) + 1

2
Lf (xn)

2 +
∑
j≥3

ajLf (xn)
j

 f ′(xn)

f ′′(xn)
(5)

are cubically convergent to simple roots of f(x) = 0. The previous series development must be seen in a
formal way, assuming that the corresponding convergence conditions are fulfilled. In fact, these methods
could be seen as a generalization of the known as C-methods, which contain extra terms to those of the
Chebyshev’s method (see [3, 4] for instance).
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Remark 2.2. In particular, if aj = 0 for j ≥ 3 in (5), it results a new construction of the well-known
Chebyshev’s iterative method

xn+1 = xn −
(
1 +

1

2
Lf (xn)

)
f(xn)

f ′(xn)
. (6)

This method and some of its properties have been studied by many authors (see [8, 9] for more details).

Remark 2.3. It should be noted here that the family of methods given in (5) is essentially the same as the
one previously given by Gander in (2). In fact, it is given by

xn+1 = xn −

Lf (xn) + 1

2
Lf (xn)

2 +
∑
j≥3

ajLf (xn)
j

 f ′(xn)

f ′′(xn)

= xn −

1 +
1

2
Lf (xn) +

∑
j≥2

aj+1Lf (xn)
j

Lf (xn)
f ′(xn)

f ′′(xn)

= xn −

1 +
1

2
Lf (xn) +

∑
j≥2

aj+1Lf (xn)
j

 f(xn)

f ′(xn)
.

Note also that this last family of methods belongs to the family of methods with iterative function G(x) =
x−H(Lf (x))f(x)/f

′(x), given by (2), where

H(Lf (x)) = 1 +
1

2
Lf (xn) +

∑
j≥2

aj+1Lf (xn)
j

satisfies the conditions H(0) = 1, H ′(0) = 1/2 and |H ′′(0)| = 2a3 <∞.

2.1 Two examples: the exponentially-fitted method and the logarithmically-fitted method

In this section two interesting examples will be considered.

An exponentially-fitted method. For solving the problem in (1) let consider the approxima-
tion of f(x) by a function g(x) of exponential-type given by

g(x) = a+ exp(c+ bx) ,

where a, b, c are unknown parameters to be determined. The idea of using interpolating functions
of exponential type has been considered, for instance by S. Amat and S. Busquier [2]. In this
work, the global convergence of exponential-type iterative methods (as well as logarithmic-type
iterative methods) is considered, by following the patterns given in [11] for other well-known
iterative methods.

Assuming that f(x) has at least until second-order derivatives, we impose collocation condi-
tions on the function, the first and the second derivatives at the point xn, that is,

g(xn) = f(xn) , g′(xn) = f ′(xn) , g′′(xn) = f ′′(xn),
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from which we get a system of equations given by
a+ exp(c+ bxn) = f(xn),

b exp(c+ bxn) = f ′(xn),

b2 exp(c+ bxn) = f ′′(xn).

After eliminating the unknown c on this system it results in{
b(f(xn)− a) = f ′(xn),

b2(f(xn)− a) = f ′′(xn),

from which one readily obtains that

a = f(xn)−
(f ′(xn))

2

f ′′(xn)
, b =

f ′′(xn)

f ′(xn)
. (7)

Finally, using the first equation of the system it follows that

c = ln(f(xn)− a)− bxn ,

and substituting the values of a and b in (7) it holds

c = ln

(
(f ′(xn))

2

f ′′(xn)

)
− xn

f ′′(xn)

f ′(xn)
. (8)

Now, the root α of f(x) = 0 is approximated by the root of the equation g(x) = 0, that is,

α ' ln(−a)− c
b

where we see that necessary conditions for the existence of a real root of g(x) are b 6= 0 and a < 0.

After substituting the values of a, b from(7) and c from(8) in the expression of the approximate
root we get the numerical method given by

xn+1 = xn + ln (1− Lf (xn))
f ′(xn)

f ′′(xn)
, (9)

where Lf (xn) is given by the quotient defined in (3).

A logarithmically-fitted method. Now consider a function h(x) of logarithmic type for ap-
proximating the function f(x) given in the nonlinear equation (1),

h(x) = a+ c ln(x+ b) ,

where again a, b, c are unknown parameters to be determined. This kind of interpolating functions
also appears in [2].

It is assumed that f(x) has at least up to second-order derivatives, and imposing the same
tangency conditions at xn as before, results in:

h(xn) = f(xn) , h′(xn) = f ′(xn) , h′′(xn) = f ′′(xn).
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This leads to the system of equations given by

a+ c ln(xn + b) = f(xn),

c

xn + b
= f ′(xn),

−c
(xn + b)2

= f ′′(xn).

Solving this system in the unknowns a, b, c gives

b = −xn −
f ′(xn)

f ′′(xn)
, c = −f

′(xn)
2

f ′′(xn)
, (10)

a = f(xn) +
f ′(xn)

2

f ′′(xn)
ln(−f ′(xn)/f ′′(xn)) . (11)

Now, the root α of f(x) = 0 is approximated by the root of the equation h(x) = 0, that is,

α ' −b+ exp(−a/c).

After substituting the values of a, b, c from (10) and (11) in the expression of the approximate
root we get the numerical method given by

xn+1 = xn + (1− exp(Lf (xn)))
f ′(xn)

f ′′(xn)
. (12)

3 Two local convergence results with asymptotic error constants

In [2] a first approach for the convergence of the iterative methods defined in (9) and (12) was
considered. Actually, the following results are established:
Theorem 3.1. Let f(x) : D → R be a three-times differentiable function with a simple zero α ∈ D. If
f ′(x) 6= 0 and sign(f ′(x))(ln |f ′(x)|)′′ ≤ 0 for each x ∈ D, then the method (9) converges monotonically
to α starting from any x0 ∈ D.

Theorem 3.2. Let f(x) : D → R be a three-times differentiable function with a simple zero α ∈ D. If
f ′(x) 6= 0 and f ′(x)f ′′′(x) ≤ 2f ′′(x)2 for each x ∈ D, then the method (9) converges monotonically to α
starting from any x0 ∈ D.

Now some new local convergence theorems for the iterative methods (9) and (12), are pre-
sented, which in addition prove their cubic order of convergence. In the statement of these results
we consider the usual notations

en = xn − α, (13)

cj =
f (j)(α)

j!f ′(α)
, j ≥ 2. (14)
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Theorem 3.3. Assume that f(x) : D → R is a sufficiently many times differentiable function with a
simple zero α ∈ D, with D an open interval, and let x0 be an initial guess close enough to α. Then, the
exponentially-fitted method defined in (9) has third-order of convergence and the error equation is

en+1 =
2c22 − 3c3

3
e3n + O(e4n) .

Proof. Considering the iteration function of the method, given by

IE(x) = x+
f ′(x)

f ′′(x)
ln

(
1− f(x)f ′′(x)

f ′(x)2

)
,

it holds that 

IE(α) = α,

IE′(α) = IE′′(α) = 0,

IE′′′(α) =
f ′′(α)2 − f (3)(α)f ′(α)

f ′(α)2
,

with the asymptotic error constant given by

A3 =
f ′′(α)2 − f (3)(α)f ′(α)

3!f ′(α)2
.

Now, the application of the Schröder-Traub’s theorem (see [15]) results after some calculus in

en+1 =
2c22 − 3c3

3
e3n + O(e4n),

and the conclusion of the Theorem follows.
Theorem 3.4. Assume that f(x) : D → R is a sufficiently many times differentiable function with a
simple zero α ∈ D, with D an open interval, and let x0 be an initial guess close enough to α. Then, the
logarithmically-fitted method defined in (12) has third-order of convergence and the error equation is

en+1 =
4c22 − 3c3

3
e3n + O(e4n) .

Proof. Let us consider the iteration function

IL(x) = x+ (1− exp(Lf (x)))
f ′(x)

f ′′(x)
.

A straightforward calculation gives

IL(α) = α,

IL′(α) = IL′′(α) = 0,

IL′′′(α) =
2f ′′(α)2 − f (3)(α)f ′(α)

f ′(α)2
.

So the method (12) is cubically convergent with asymptotic error constant

A3 =
2f ′′(α)2 − f (3)(α)f ′(α)

3!f ′(α)2
.
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Now, the application of the Schröder-Traub’s theorem (see [15]) results after some calculus in

en+1 =
4c22 − 3c3

3
e3n + O(e4n),

and the conclusion of the Theorem follows.
Remark 3.1. Note that the asymptotic error constant of the exponentially-fitted method is always smaller
than the asymptotic error constant of the logarithmically-fitted method. Nevertheless, we cannot deduce from
it than under the same conditions the first method converges faster than the second one, as can be confirmed
by looking at the numerical examples.

3.1 An interesting dynamical example

In the following numerical experiment the basins of attraction of the fixedpoints of the iteration
maps obtainedwhenmethods (9) and (12) are applied to the polynomial p(z) = z2−1with z ∈ C
are plotted. This is just a first approach to the complex dynamics of both methods. Note that the
iteration maps obtained by applying methods (9) and (12) to p(z) = z2 − 1 are, respectively

F1(z) =

(
1 + ln

(
z2 + 1

2z2

))
z

and
F2(z) =

(
2− e

1
2−

1
2z2

)
z.

The roots of p(z), z = 1 and z = −1 are fixed points of F1 and F2. We select a region in the complex
plane and color in black (white) the initial points whose orbits converge to −1 (respectively to 1)
with a certain accuracy and under a prefixed number of iterations (see [16] for more details).
The case of the exponentially-fitted method, F1, does not reveal any kind of surprises (points in
the right half-plane converge to 1 and points in the left half-plane converge to −1). That is, the
method converges to the root that is closer to the initial point. This situation is shared with other
methods, such as Newton’s or Halley’s methods. However the dynamics of the logarithmically-
fitted method, F2, are quite more intricate even in this simple case, as we can see in Figure 1. Note
that there are starting points whose orbit converges to the farthest root, a feature that is shared
with Chebyshev’s method, for instance.

With this example we just want to highlight the need of a deeper dynamical study of the meth-
ods developed in this paper for other functions, with a complete analysis of the fixed points and
their attracting character, critical values, and so on. For instance, a general study on quadratic
polynomials could be done to check if these methods satisfy the so-called “Cayley test” (see [5]
for details). To pass the test, in brief means that the considered method behaves as well as New-
ton’s method for quadratic polynomials, that is, the dynamical plane (basin of attraction of the
roots) is given by two semi-planes separated by the equidistant line between the two roots. Note
that the iteration maps obtained when methods (9) and (12) are applied to polynomials are not
rational maps. Therefore their dynamical study could present behaviors that do not appear in the
rational case, such as wandering domains.

4 Numerical Examples

In order to test the performance of the proposed methods we have considered the Newton’s
method, themethods (9) and (12) developed in thiswork and otherwell-known third-ordermeth-
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Figure 1: Basins of attraction of the iterationmapsF1(z) andF2(z), relatedwith the exponentially-fitted and logarithmically-fittedmethods
applied to z2 − 1.

ods appeared in the literature, which are given as follows:

• Newton’s method (NM):
xn+1 = xn −

f(xn)

f ′(xn)
.

• Euler’s method (EM):

xn+1 = xn −
(
1−

√
1− 2Lf (xn)

)
f ′(xn)

f ′′(xn)
.

• Chebyshev’s method (CHM):

xn+1 = xn −
(
1 +

1

2
Lf (xn)

)
f(xn)

f ′(xn)
.

• Halley’s method (HM):
xn+1 = xn −

2

2− Lf (xn)
f(xn)

f ′(xn)
.

• The exponentially-fitted method (EFM):

xn+1 = xn + ln (1− Lf (xn))
f ′(xn)

f ′′(xn)
.

• The logarithmically-fitted method (LFM):

xn+1 = xn + (1− exp(Lf (xn)))
f ′(xn)

f ′′(xn)
.

All the computationswere done using theMathematica system taking 62 digit floating point arith-
metics. In Table 1 we show the number of iterations (IT) required to reach a specified accuracy
level according to the stopping criterion given by

‖xN − xN−1‖ < 10−15 and ‖f(xN )‖ < 10−15 .
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The number of maximum iterations before stopping the iterative procedure has been established
in 500 (in case of non-convergence before this number of iterations it is indicated by NC). The
computational time for each iterative process expressed in milliseconds has been included below
the number of iterations. It can be seen that for the exponential and logarithmic-type functions the
best performances correspond respectively to the adapted exponential and logarithmic methods,
as expected. The following functions have been considered where the approximate zeros α are
displayed up to 50th decimal places.

f1(x) = exp(10x)− 1, α = 0.

f2(x) = exp(x2 + 7x− 30)− 1, α = −10.

f3(x) = 3 exp(x)− exp(3)x, α = 3.

f4(x) =
1
5 exp(x) + 4 exp(2x)− 10,

α = ln
(√

4001−1
40

)
' 0.4423346363699767

f5(x) = x2 + sin(x) + x, α = 0.

f6(x) =
(
x3 + 1

)
cos
(
πx
2

)
+
√
1− x2 − 2

27

(
9
√
2 + 7

√
3
)
, α = 1/3.

f7(x) = (x− 1)3 − 1, α = 2.

f8(x) = arctan(x), α = 0.

f9(x) = ln(100x)− 1, α = e
100 ' 0.0271828182845904

f10(x) = ln(x2 + 7x− 30)− 1,

α =
√
169+4e−7

2 ' 3.205839382840827

Remark 4.1. Note that for the equation f1(x) = 0 the exponentially-fitted method is exact, while for the
equation f9(x) = 0 the logarithmically-fittedmethod is exact. Thismeans that only one iteration is necessary
to get the exact roots (without taking into account round-off errors). In Table 1 there appear two iterations
because the stopping criterion ‖xN − xN−1‖ < 10−15 must be satisfied.
We also note that among all the methods considered, only Halley’s method and the exponentially-fitted one
are capable of obtaining the roots for all the equations.
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Table 1: Number of iterations and CPU times needed to get the root with a prescribed tolerance (∗means Overflow and ◦means Underflow)
for Newton’s, Euler’s, Chebyshev’s, Halley’s, exponentially fitted and logarithmically fitted methods.

Function x0 NM EM CHM HM EFM LFM
f1(x) −4 ∗ ◦ ∗ 24 2 ◦

– – – 0.75 0.03 –

f2(x) −8 ∗ NC ∗ 15 6 26

– – – 1.41 0.71 2.58

f3(x) 12 16 14 11 9 6 10

0.59 1.16 0.58 0.44 0.25 0.32

f4(x) 5 15 13 10 9 5 10

0.85 1.19 0.66 0.54 0.26 0.74

f5(x) 5 8 7 6 6 5 6

0.30 0.65 0.23 0.21 0.33 0.29

f6(x) 0.8 7 6 5 4 5 5

0.64 2.30 0.82 0.58 0.78 0.91

f7(x) 4 8 6 6 6 5 6

0.11 0.45 0.12 0.11 0.10 0.18

f8(x) 4 ∗ 10 ∗ 5 6 7

– 0.19 – 0.11 0.16 0.13

f9(x) 4 NC NC NC 9 8 2

– – – 0.45 0.53 0.06

f10(x) 6 NC 10 NC 7 8 5

– 0.81 – 0.63 0.68 0.37

5 Conclusions

In this article an exponentially-fitted method and a logarithmically-fitted method for approxi-
mating the roots of non-linear equations have been developed. In fact, these methods are a redis-
covery of the methods in [2] and they are included in a general family that has been developed
modifying a classical result of Gander. It has been shown that the order of the presented methods
is three, and some error equations have been provided. We have compared the proposedmethods
with other well-known methods of same order. From the numerical examples, we conclude that
the proposed methods outperform the other methods for each of the types of functions for which
they have been designed, and can be comparable for other kind of functions. Thus, the proposed
methods may be considered as alternative methods for solving nonlinear equations, particularly
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if the functions involved present exponential or logarithmic behaviors. In any case, we note that
from our main result, many of the third order methods in the literature can be rediscovered.
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