Resolución sumergida de foliaciones sobre el plano proyectivo complejo
- José Manuel Aroca Hernández-Ros Directeur/trice
Université de défendre: Universidad de Valladolid
Année de défendre: 1991
- José Javier Etayo Miqueo President
- Felipe Cano Torres Secrétaire
- José Luis Vicente Córdoba Rapporteur
- Antonio Campillo López Rapporteur
- Ignacio Luengo Velasco Rapporteur
Type: Thèses
Résumé
EN LA PRIMERA PARTE DEL TRABAJO SE ESTUDIA, DADO UN HAZ DE MODULOS LOCALMENTE LIBRE DE RANGO N SOBRE UN ESQUEMA INTEGRO, NOETHERIANO Y LOCALMENTE FACTORIAL, LA RELACION ENTRE SUBMODULOS DE RANGO R DE DICHO HAZ, SUBMODULOS DE RANGO N-R DE SU DUAL Y SUBMODULOS INVERSIBLES DE SU R-ESIMA POTENCIA EXTERIOR SE APLICAN ESTOS RESULTADOS AL HAZ DE FORMAS SOBRE UNA VARIEDAD ALGEBRAICA NO SINGULAR PARA, AÑADIENDO LA CONDICION DE INTEGRABILIDAD, OBTENER EL CONCEPTO DE FOLIACION SINGULAR, A PARTIR DE AQUI SE DEFINEN Y ESTUDIAN LOS CONCEPTOS DE SEPARATRIZ E INTEGRAL PRIMERA DE UNA FOLIACION SINGULAR SOBRE EL PLANO PROYECTIVO COMPLEJO PUEDE TRANSFORMARSE, MEDIANTE LA COMPOSICION DE UN NUMERO FINITO DE TRANSFORMACIONES DE CREMONA, EN OTRA FOLIACION (TAMBIEN DEFINIDA SOBRE EL PLANO PROYECTIVO COMPLEJO) CUYAS SINGULARIDADES SON O BIEN SIMPLES (EN EL SENTIDO DE SEINDENBERG) O BIEN ACEPTABLES (CONTRACCION DE UNA CURVA LISA CUYAS TANGENCIAS CON LAS SEPARATRICES DE LA FOLIACION NO SON MULTIPLES).