Desarrollos truncados de Ito-Taylor y aplicaciones
- Ramón Ardanuy Albajar Director
Universidad de defensa: Universidad de Salamanca
Año de defensa: 1999
- Pilar Ibarrola Muñoz Presidente/a
- Jesús Rodríguez Lombardero Secretario
- Manuel Molina Fernández Vocal
- Francisco Javier Villarroel Rodríguez Vocal
- Quintín Martín Martín Vocal
Tipo: Tesis
Resumen
Cuando (X sub t) es la solución de una ecuación diferencial estocástica se han obtenido, a partir de los desarrollos de Ito-Taylor, desarrollos truncados de primer y segundo orden que aproximan f(t,X sub t) por una serie de potencias de t-t sub 0 y de x sub t-x sub t0, Los desarrollos truncados anteriores se aplican para obtener esquemas de resolución aproximada de ecuaciones diferenciales estocásticas que generalizan los métodos de Runge-Kutta del caso ordinario. Se han obtenido así esquemas de órdenes 2 y 3 débil. También se aplican los desarrollos truncados a la inferencia estocástica en el caso en el que los coeficientes de la ecuación son desconocidos (el de difusión además constante) y la solución es observable en un intervalo de tiempo. Se aborda finalmente el caso en el que el coeficiente de deriva es una función conocida que depende de un parámetro desconocido, que debe ser estimado..