Ecuaciones de la variedad de Kummer
- Herrera Muro, José María
- José María Muñoz Porras Director/a
Universitat de defensa: Universidad de Salamanca
Any de defensa: 1993
- Cristóbal García-Loygorri Urzaiz President
- Daniel Hernández Ruipérez Secretari
- Juan Bautista Sancho de Salas Vocal
- Sebastián Xambó Descamps Vocal
- Antonio Campillo López Vocal
Tipus: Tesi
Resum
El objetivo de esta tesis es el computo explicito de las ecuaciones de las variedades de Kummer, sea (x,o) una variedad abeliana principalmente polarizada (siendo o una polarización simétrica e irreducible). La serie lineal ox(2o) define una inmersión proyectiva de la variedad de Kummer k(x)=x/(+-1 -pn (n=2g-1); se demuestra que k(x) es intersección de hipersuperficies de grado 4 y se computa explícitamente una base de dichas hipersuperficies. Los coeficientes de las ecuaciones de dichas hipersuperficies estan determinados por las coordenadas del origen de k(x). También se da una demostración del teorema de Stone- von Neumann para grupos de Heisenberg finitos valida para cuerpos no algebraicamente cerrados. Finalmente, se da una demostración de la ecuación funcional de las constantes theta a partir del teorema de Riemann-Roch para esquemas abelianos.