Beta hebbian learningdefinition and analysis of a new family of learning rules for exploratory projection pursuit
- Quintián Pardo, Héctor
- Emilio Santiago Corchado Rodríguez Director
Universitat de defensa: Universidad de Salamanca
Fecha de defensa: 09 de de juny de 2017
- Pablo García Bringas President/a
- Leticia Elena Curiel Herrera Secretària
- Ajith Abraham Vocal
Tipus: Tesi
Resum
This thesis comprises an investigation into the derivation of learning rules in artificial neural networks from probabilistic criteria. •Beta Hebbian Learning (BHL). First of all, it is derived a new family of learning rules which are based on maximising the likelihood of the residual from a negative feedback network when such residual is deemed to come from the Beta Distribution, obtaining an algorithm called Beta Hebbian Learning, which outperforms current neural algorithms in Exploratory Projection Pursuit. • Beta-Scale Invariant Map (Beta-SIM). Secondly, Beta Hebbian Learning is applied to a well-known Topology Preserving Map algorithm called Scale Invariant Map (SIM) to design a new of its version called Beta-Scale Invariant Map (Beta-SIM). It is developed to facilitate the clustering and visualization of the internal structure of high dimensional complex datasets effectively and efficiently, specially those characterized by having internal radial distribution. The Beta-SIM behaviour is thoroughly analysed comparing its results, in terms performance quality measures with other well-known topology preserving models. • Weighted Voting Superposition Beta-Scale Invariant Map (WeVoS-Beta-SIM). Finally, the use of ensembles such as the Weighted Voting Superposition (WeVoS) is tested over the previous novel Beta-SIM algorithm, in order to improve its stability and to generate accurate topology maps when using complex datasets. Therefore, the WeVoS-Beta-Scale Invariant Map (WeVoS-Beta-SIM), is presented, analysed and compared with other well-known topology preserving models. All algorithms have been successfully tested using different artificial datasets to corroborate their properties and also with high-complex real datasets.