Stacking dynamic time warping for the diagnosis of dynamic systems

  1. Alonso, Carlos J. 1
  2. Prieto, Óscar J. 1
  3. Rodríguez, Juan J. 2
  4. Bregón, Aníbal 1
  5. Pulido, Belarmino 1
  1. 1 Universidad de Valladolid
    info

    Universidad de Valladolid

    Valladolid, España

    ROR https://ror.org/01fvbaw18

  2. 2 Universidad de Burgos
    info

    Universidad de Burgos

    Burgos, España

    ROR https://ror.org/049da5t36

Liburua:
XII Conferencia de la Asociación Española para la Inteligencia Artificial: (CAEPIA 2007). Actas
  1. Borrajo Millán, Daniel (coord.)
  2. Castillo Vidal, Luis (coord.)
  3. Corchado Rodríguez, Juan Manuel (coord.)

Argitaletxea: Universidad de Salamanca

ISBN: 978-84-611-8846-8 978-84-611-8847-5

Argitalpen urtea: 2007

Alea: 1

Orrialdeak: 227-236

Biltzarra: Conferencia de la Asociación Española para la Inteligencia Artificial (12. 2007. Salamanca)

Mota: Biltzar ekarpena

Laburpena

This paper explores an integrated approach to diagnosis of complex dynamic systems. Consistency-based diagnosis is capable of performing automatic fault detection and localization using just correct behaviour models. Nevertheless, it may exhibit low discriminative power among fault candidates. Hence, we combined the consistency based approach with machine learning techniques specially developed for fault identification of dynamic systems. In this work, we apply Stacking to generate time series classifiers from classifiers of its univariate time series components. The Stacking scheme proposed uses K-NN with Dynamic Time Warping as a dissimilarity measure for the level 0 learners and Naïve Bayes at level 1. The method has been tested in a fault identification problem for a laboratory scale continuous process plant. Experimental results show that, for the available data set, the former Stacking configuration is quite competitive, compare to other methods like tree induction, Support Vector Machines or even K-NN and Naïve Bayes as stand alone methods.