Estimación a posteriori del error y adaptabilidad en formulaciones mixtas e híbridas de problemas propios de la mecánica de medios continuos

  1. Domínguez Álvarez, Mª del Carmen
Dirigida por:
  1. Luis Ferragut Canals Director

Universidad de defensa: Universidad de Salamanca

Año de defensa: 1999

Tribunal:
  1. Anastasio Pedro Santos Yanguas Presidente/a
  2. Jesús Vigo-Aguiar Secretario
  3. Gabriel Winter Althaus Vocal
  4. Luis Antonio Gavete Corvinos Vocal
  5. Antonio Huerta Cerezuela Vocal

Tipo: Tesis

Teseo: 71380 DIALNET

Resumen

Empleamos una formulación variacional mixta-híbrida del problema de elasticidad plana que nos permite obtener el campo de tensores directamente, no a partir del campo de desplazamientos, e imponemos al mismo tiempo la continuidad de las componentes normales de los tensores en las fronteras de los elementos utilizando multiplicadores de Lagrange, Para el espacio de los multiplicadores de Lagrange consideramos dos espacios de dimensión finita distintos, obteniendo así dos formulaciones aproximadas: de un obtendremos los tensores de tensión con las componentes normales continuas en las fronteras de los elementos y con la otra obtendremos desplazamientos en las fronteras continuos. Empleando ambas aproximaciones, desarrollamos una estimación a posteriori del error utilizando el principio de la energía complementaria. Con este estimador de error creado, construimos un método multimalla adaptativo no estándar, donde la malla fina corresponde a la aproximación no conforme y las sucesivas mallas a gruesas corresponden a la aproximación coforme. Se observa la eficacia del método así desarrollado con diferentes ejemplos..