Sistemas cuánticos exactamente solublessimetría dinámica y fases cuánticas

  1. LEJARRETA GONZALEZ JUAN DOMINGO
unter der Leitung von:
  1. José María Cerveró Santiago Doktorvater

Universität der Verteidigung: Universidad de Salamanca

Jahr der Verteidigung: 1996

Gericht:
  1. Santiago Velasco Maíllo Präsident
  2. Luis Roso Franco Sekretär
  3. Mariano Santander Vocal
  4. Víctor Aldaya Valverde Vocal
  5. Francisco Javier Villarroel Rodríguez Vocal

Art: Dissertation

Teseo: 54210 DIALNET

Zusammenfassung

- se han calculado las funciones de onda del oscilador armonico generalizado unidemensional. - se han aplicado las propiedades de simetria dinamica de un sistema fisico en el analisis del "squeezing" y las fases cuanticas. - se ha analizado un metodo de caractrerizacion de estados ciclicos en sistemas hamiltonianos su(1,1) o su(2) - invariantes. - analisis del amplificador parametrico optico y calculo exacto de sus magnitudes caracteristicas. - se ha propuesto un metodo de solucion para algunos sistemas hamiltonianos so(3,2) - invariantes exactamente solubles y sus restricciones triparametricas mas notables. - se han utilizado las propiedades de los sistemas de ermakov en la resolucion de sistemas cuanticos.