On ramifications divisors of functions in a punctured compact Riemann surface

  1. Cutillas Ripoll, Pascual 1
  1. 1 Departamento de Matemáticas Universidad de Salamanca
Zeitschrift:
Publicacions matematiques

ISSN: 0214-1493

Datum der Publikation: 1989

Ausgabe: 33

Nummer: 1

Seiten: 163-171

Art: Artikel

DOI: 10.5565/PUBLMAT_33189_14 DIALNET GOOGLE SCHOLAR lock_openDDD editor

Andere Publikationen in: Publicacions matematiques

Zusammenfassung

Let v be a compact Riemann surface and v' be the complement in v of a nonvoid finite subset. Let M(v') be the field of meromorphic functions in v'. In this paper we study the ramification divisors of the functions in M(v') which have exponential singularities of finite degree at the points of v-v', and one proves, for instance, that if a function in M(v') belongs to the subfield generated by the functions of this type, and has a finite ramification divisor, it also has a finite divisor. It is also proved that for a given finite divisor d in v', the ramification divisors (with a fixed degree) of the functions of the said type whose divisor id d, define a proper analytic subset of a certain symmetric power of v'.