Algorithmic errorscognitive processes and educational actionse
ISSN: 1130-3743
Datum der Publikation: 2013
Ausgabe: 25
Nummer: 1
Seiten: 215-235
Art: Artikel
Andere Publikationen in: Teoría de la educación
Zusammenfassung
Dans cet article, on définie l�espace cognitif de la soustraction en mettant l�accent sur le contrôle des mécanismes pour son correcte acquisition et sur les différents processus devant être mis en place par le cadre éducatif. La théorie sous-jacente à l�acquisition de l�erreur y est décrite. Pour ce faire, on tient compte de l�analyse des processus de transfert négatif induits par le contexte éducatif. L�analyse s�inscrit au point de rencontre de la théorie de l�éducation et des théories cognitives sur l�apprentissage algorithmique.
Bibliographische Referenzen
- Ausubel, D.P., Novak, J.D., Hanesian, H., (1983) Psicología Educativa: Un Punto de Vista Cognoscitivo, , (2.a edición). México, Editorial Trillas
- Baroody, A.J., (1988) El Pensamiento Matemático de Los Niños, , Madrid, Editorial Aprendizaje-Visor
- Baroody, A.J., Ginsburg, H.P., The relationship between initial meaningful and mechanical knowledge of arithmetic (1986) Conceptual and Procedural Knowledge: The Case of Mathematics, pp. 75-107. , Hiebert, J. (ed). NJ Lawrence Erlbaum Associates, Hillsdale
- Bassok, M., Adding apples and oranges: Alignment of semantic and formal knowledge (1998) Cognitive Psychology, 35, pp. 99-134
- Bodner, G.M., Constructivism: A theory of knowledge (1986) Journal of Chemical Education, 63, pp. 873-878
- Bransford, J., Schwartz, D., Rethinking transfer: A simple proposal with multiple implications (2001) Review of Research in Education, 24, pp. 61-100
- Bromme, R., Steinbring, H., Interactive development of subject matter in the mathematics classroom (1994) Educational Studies in Mathematics, 2, pp. 217-248
- Brown, D., Clement, J., Overcoming misconceptions via analogical reasoning: Abstract transfer versus explanatory model construction (1989) Instructional Science, 18, pp. 237-261
- Brown, J.S., Burton, R.B., Diagnostic models for procedural bugs in basic mathematical skills (1978) Cognitive Science, 2, pp. 155-192
- Brown, J.S., Vanlehn, K., Towards a generative theory of «bugs» (1982) Addition and Subtraction, A Cognitive Perspective, pp. 117-135. , Carpenter, T. P.; Moser, J. M. and Romberg, T. A. (eds). Hillsdale, nj Erlbaum
- Chi, M.T.H., Bassok, M., Lewis, M., Reimann, P., Glaser, R., Self-explanation: How students study and use examples in learning to solve problems (1989) Cognitive Science, 13, pp. 145-182
- Clement, J., Using bridging analogies and anchoring intuitions to deal with students' preconceptions in physics (1993) Journal of Research in Science Teaching, 30, pp. 1241-1257
- Cockburn, A.D., Littler, G., (2008) Mathematical Misconceptions, , London Sage
- Duit, R., On the role of analogies and metaphors in learning science (1991) Science Education, 75, pp. 649-672
- Fischbein, E., (1987) Intuition in Science and Mathematics An Educational Approach, , Dordrecht
- Reidel, D., Tacit models and mathematical reasoning (1989) For the Learning of Mathematics, 9 (2), pp. 9-14
- Reidel, D., The interaction between the formal and the algorithmic and the intuitive components in a mathematical activity (1994) Didactics of Mathematics As A Scientific Discipline, pp. 328-375. , Biehler, R.; Scholz, R. W.; Straser, R. and Winkelmann, B. (eds). Dordrecht, The Netherlands Kluwer Academic
- Fischbein, E., Intuitions and schemata in mathematical reasoning (1999) Educational Studies in Mathematics, 38, pp. 11-50
- Fuson, K., Role of representation and verbalization in the teaching of multi-digit additions and subtractions (1986) European Journal of Psychology of Education, 1, pp. 35-36
- Fuson, K., (1992) Research on Whole Number Addition and Subtraction. Handbook of Research on Mathematics Teaching and Learning, A Project of the National Council of Teachers of Mathematics, pp. 243-275. , New York, Maxwell Macmillan International
- Fuson, K., Briars, D.J., Using base-ten blocks learning/teaching approach for first and second grace place value and multidigit additions and subtraction (1990) Journal for Research in Mathematics Education, 21, pp. 180-206
- García Carrasco, J., García Del Dujo, A., (2001) Teoría de la Educación Ii Procesos Primarios de Formación Del Pensamiento y la Acción, , Salamanca, Ediciones Universidad de Salamanca
- Gellman, R.S., Gallistel, C.R., (1978) The Child's Understanding of Number, , Cambridge, ma, Harvard University Press
- Hiebert, J., Lefevre, P., Conceptual and procedural knowledge in mathematics, An introductory analysis (1986) Conceptual and Procedural Knowledge: The Case of Mathematics, pp. 1-27. , Hiebert, J. (ed). Hillsdale, nj Lawrence Erlbaum Associates
- Hiebert, J., Wearne, D., Instruction, understanding, and skill in multidigit addition and subtraction (1996) Cognition and Instruction, 14 (3), pp. 251-284
- Huttenlocher, J., Jordan, N.C., Levine, S.C., A mental model for early arithmetic (1994) Journal of Experimental Psychology General, 3, pp. 284-296
- Kamii, C., (1985) Young Children Reinvent Arithmetic: Implications of Piaget's Theory, , New York Teachers College Press
- Kolodner, J.Ll, Reconstructive memory: A computer model (1983) Cognitive Science, 7, pp. 281-328.
- Matz, M., Towards a process model for high school algebra errors (1982) Intelligent Tutoring Sistems, pp. 25-49. , Sleeman, D. and Brown, J. S. (eds). London Academic Press
- Maza, C., (1991) Enseñanza de la Suma y la Resta, , Madrid, Síntesis
- Novak, J.D., Concept-based learning (1983) The Optimun Utilization of Knowledge, pp. 100-113. , Kenneth, E.; Boulding and Lawrence, S. (eds). Boulder Colorado Westview Press
- Olhlson, S., Rees, E., The function of conceptual understanding in the learning of arithmetic procedure (1991) Cognition and Instruction, 8, pp. 103-179
- Orgill, M., Bodner, G., What research tells us about using analogies to teach chemistry (2003) Chemistry Education Research and Practice, 5 (1), pp. 15-32
- Resnick, L., Syntax and semantics in learning to subtract (1982) Addition and Subtraction: A Cognitive Perspective, pp. 136-155. , Carpenter, T.; Moser, J. and Romberg, T. (eds). Hillsdale, nj Lawrence Erlbaum Assoc
- Resnick, L.B., A developmental theory of number understanding (1983) The Development of Mathematical Thinking, pp. 109-151. , Ginsburg, H. P. (ed). New York Academic Press
- Resnick, L.B., Omanson, S.F., Learning to understand arithmetic (1987) Advances in Instructional Psychology, pp. 41-95. , Glaser R. (ed). Hillsdale, nj Lawrence Erlbaum Assoc
- Sánchez, A.B., (2005) Las Dificultades Cognitivas (Bugs) en Operaciones en Las Que Intervienen Algoritmos Aritméticos y Su Tratamiento Educativo Con Programaciones Hipermedia, , Unpublished doctoral thesis. Universidad de Salamanca, Facultad de Educación, Salamanca, Spain
- Sánchez, A.B., The interaction between intuitive interpretations, linguistic knowledge and algorithmic components in children's (aged 7-9) subtraction errors (2012) British Journal of Educational Research, 2 (1), pp. 20-41
- Sánchez, A.B., López, R., La transferencia de aprendizaje algorítmico y el origen de los errores en la sustracción (2011) Revista de Educación, 354 (1), pp. 429-445
- Sánchez García, A.B., Cabrero Fraile, F.J., Sánchez Llorente, J.M., Fases del modelo didáctico-procesal seguidas en la construcción de simulaciones en la asignatura de Física Médica para el contexto de enseñanza-aprendizaje virtual (2012) Ried. Revista Iberoamericana de Educación A Distancia, 15 (2), pp. 13-30
- Sander, E., Solving arithmetic operations: A semantic approach (2001) Proceedings of the 23rd Annual Conference of the Cognitive Science Society, pp. 915-920. , Edinburgh
- Sleeman, D.H., Inferring student models for intelligent cai (1983) Machine Learning: An Artificial Intelligence, pp. 483-510. , Michalski, R.; Carbonell, J. and Mitchell, T. M. (eds). Palo Alto, ca, Tioga Press
- Spiro, P., Feltovich, P., Coulson, R., Anderson, D., Multiple analogies for complex concepts: Antidotes for analogy-induced misconception in advanced knowledge acquisition (1989) Similarity and Analogical Reasoning, pp. 489-531. , Vosniadou, S. and Ortony, A. (comps). Cambridge, ma: Cambridge University Press
- Stavy, R., Babai, R., Tsamir, P., Tirosh, D., Lin, F., McRobbie, C., Are intuitive rules universal? (2006) International Journal of Science and Mathematics Education, 4, pp. 417-436
- Stavy, R., Tirosh, D., Intuitive rules in science and mathematics: The case of «more of A-more of B» (1996) International Journal of Science Education, 18, pp. 653-667
- Stavy, R., Tirosh, D., (2000) How Students (Mis-)understand Science and Mathematics, Intuitive Rules, , New York Teachers College Press
- Steffe, L., Cobb, P., (1988) Construction of Arithmetical Meanings and Strategies, , New York, Springer-Verlag
- Steinbring, H., Epistemological investigation of classroom interaction in elementary mathematics teaching (1997) Educational Studies in Mathematics, 32, pp. 49-92
- Steinbring, H., What makes a sign a mathematical sign? An epistemological perspective on mathematical interaction (2006) Educational Studies in Mathematics, 60, pp. 133-162
- Thagard, P., Analogy, explanation, and education (1992) Journal of Research in Science Teaching, 29, pp. 537-544
- Tirosh, D., Stavy, R., Intuitive Rules in science and mathematics: The case of «everything can be divided by two» (1996) International Journal of Science Education, 18, pp. 669-683
- Tirosh, D., Stavy, R., Intuitive rules, a way to explain and predict students' reasoning (1999) Educational Studies in Mathematics, 38, pp. 51-66
- Tirosh, D., Tsamir, P., What can mathematics education gain from the conceptual change approach? And what can the conceptual change approach gain from its application to mathematics education? (2004) Learning and Instruction, 14, pp. 535-540
- Tirosh, D., Tsamir, P., Hershkovitz, S., Insights into children's intuitions of addition, subtraction, multiplication and division (2008) Mathematical Misconceptions, pp. 54-70. , Cockburn, A. D. and Littler, G. (eds). London Sage, London
- Tsamir, P., Enhancing prospective teachers' knowledge of learners' intuitive conceptions, the case of same ASame B (2005) Journal of Mathematics Teacher Education, 8, pp. 469-497
- Vanlehn, K., Bugs are not enough: Empirical studies of bugs, impasses and repairs in procedural skills (1982) Journal of Mathematical Behaviour, 3, pp. 3-71
- Vanlehn, K., On the representation of procedures in repair theory (1983) The Development of Mathematical Thinking, pp. 201-252. , Ginsburg, H. (ed). New York Academic Press
- Hiebert, J., Arithmetic procedures are induced from examples (1986) Conceptual and Procedural Knowledge, the Case of Mathematics, pp. 133-179. , Hillsdale, nj Lawrence Erlbaum Assoc
- Hiebert, J., Learning one subprocedure per lesson (1987) Artificial Intelligence, 31, pp. 1-40
- Hiebert, J., (1990) Mind Bugs: Origins of Procedural Misconceptions, , Cambridge, Mass mit Press
- Vanlehn, K., Brown, J.S., Planning nets: A representation for formalizing analogies and semantic models of procedural skills (1980) Aptitude, Learning, and Instruction, pp. 95-137. , Snow, R. E.
- Federico, P. A. and Montague, W. E. (eds). NJ Lawrence Erlbaum, Hillsdale
- Young, R.M., O'shea, T., Errors in children's subtraction (1981) Cognitive Science, 5, pp. 153-177
- Zook, K.B., Effects of analogical processes on learning and misrepresentation (1991) Educational Psychology Review, 3, pp. 41-72
- Zook, K.B., Divesta, F.J., Instructional analogies and conceptual misrepresentations (1991) Journal of Educational Psychology, 83, pp. 246-252