Análisis psicométrico de una escala de percepción sobre la utilidad de Moodle en la universidad

  1. Olmos Migueláñez, Susana 1
  2. Martínez Abad, Fernando 1
  3. Torrecilla Sánchez, Eva María 1
  4. Mena Marcos, Juan José 1
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Revista:
Relieve: Revista ELectrónica de Investigación y EValuación Educativa

ISSN: 1134-4032

Any de publicació: 2014

Volum: 20

Número: 2

Tipus: Article

DOI: 10.7203/RELIEVE.20.2.4221 DIALNET GOOGLE SCHOLAR lock_openAccés obert editor

Altres publicacions en: Relieve: Revista ELectrónica de Investigación y EValuación Educativa

Objectius de Desenvolupament Sostenible

Resum

Dada la importancia que los entornos virtuales de aprendizaje (learning management systems) han adquirido en la educación superior, y la generalización en el empleo de la plataforma Moodle en muchas instituciones universitarias, se diseña y se validan las cualidades psicométricas de una escala de utilidad percibida sobre el uso de Moodle. Se pretende aportar un instrumento válido y fiable que permita comprobar cuál es la percepción de los estudiantes sobre la utilidad de Moodle. De la población de estudiantes universitarios del ámbito de las Ciencias de la Educación, se obtiene una muestra de 754 sujetos. Los resultados manifiestan que la escala evalúa, adecuadamente, la utilidad de la plataforma en cinco dimensiones: contenidos, actividades, evaluación, interacción y aprendizaje. Finalmente, se discute sobre la utilidad de la escala para evaluar la utilidad de Moodle y para la implementación de procesos de mejora de su empleo en las instituciones de Educación Superior.

Referències bibliogràfiques

  • Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. Englewood Cliffs, New York: Prentice-Hall.
  • Al-Busaidi, K. A., & Al-Shihi, H. (2012). Key factors to instructors’ satisfaction of learning management systems in blended learning. Journal of Computing in Higher Education, 24 (1), 18-39.
  • Antonenko, P., Toy, S., & Niederhauser, D. (2004). Modular Object-Oriented Dynamic Learning Environment: What Open Source Has to Offer. En Association for Educational Communications and Technology. Recuperado de http://www.eric.ed.gov/ERICWebPortal/detail?accno=ED485088
  • Arnal, J., Rincón, D. del, & Latorre, A. (1992). Investigación educativa: fundamentos y metodologías (1a. ed.). Barcelona: Labor.
  • Aydin, C. C., & Tirkes, G. (2010). Open Source Learning Management Systems in Distance Learning. Turkish Online Journal of Educational Technology, 9 (2), 175-184.
  • Bandura, A., & Locke, E. A. (2003). Negative self-efficacy and goal effects revisited. The Journal of Applied Psychology, 88(1), 87-99.
  • Barberá, E. & Badia, A. (2004). Educar con aulas virtuales. Orientaciones para la innovación en el proceso de enseñanza y aprendizaje. Madrid: Antonio Machado Libros.
  • Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley-Interscience.
  • Brennan, R. L., & Prediger, D. J. (1981). Coefficient Kappa: Some uses, misuses, and alternatives. Educational and Psychological Measurement (41), 687-699.
  • Britain, S. & Liber, O. (1999). A Framework for Pedagogical Evaluation of Virtual Learning Environments. Recuperado de http://www.jtap.ac.uk/reports/htm/jtap-041.html
  • Byrne, B. (2001). Structural equation modeling with amos: basic concepts, applications, and programming. Oxford: Routledge.
  • Castells, M. (1999). La Era de la información: economía, sociedad y cultura. La sociedad Red (Vol. 1). Madrid: Alianza Editorial.
  • Cohen, D., & McCuaig, W. (2008). Three lectures on post-industrial society. Cambridge: MIT Press.
  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, (20), 37-46.
  • Cole, J. & Foster, H. (2007). Using Moodle: Teaching with the Popular Open Source Course Management System. London: O'Reilly.
  • Conrey, F. R. & Smith, E. R. (2000). Attitude Representation: Attitudes as Patterns in a Distributed, Connectionist Representational System, Social Cognition, 25 (5), 718-735.
  • Davis, F. D. (1993). User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. International Journal of Man-Machine Studies, 38 (3), 475-487.
  • Davis, F. D., Bagozzi, R. P., y Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35 (8), 982-1003.
  • De Barros, A. F. (2012). Características Psicométricas da Adaptacão Portuguesa do Perfil de Auto-Percepção para Estudiantes Universitários - SPPCS. Revista Iberoamericana de Diagnóstico y Evaluación Psicológica, 1(33), 93-110.
  • DeNeui, D. L., & Dodge, T. L. (2006). Asynchronous Learning Networks and Student Outcomes: The Utility of Online Learning Components in Hybrid Courses. Journal of Instructional Psychology, 33 (4), 256-259.
  • Eastman, C., & Marzillier, J. S. (1984). Theoretical and methodological difficulties in Bandura’s self-efficacy theory. Cognitive Therapy and Research, 8 (3), 213-229.
  • Ellis, R.K. (2009). Learning Managament Systems. Alexandria: American Society for Training & Development (ASTD).
  • Ellison, N.B., Steinfield, C., & Lampe, C. (2007). The benefits of facebok “friends”: Social capital and college students’ use of online social network sites. Journal of Computer-Mediated Communication, 12(4), 1143-1168.
  • Elosua Oliden, P. & Zumbo, B.D. (2008). Coeficientes de fiabilidad para escalas de respuesta categórica ordenada. Psicothema, 20(4), 896-901.
  • Escobar-Rodriguez, T., & Monge-Lozano, P. (2012). The acceptance of Moodle technology by business administration students. Computers & Education, 58 (4), 1085–1093.
  • Friedrich, H. F., & Hron, A. (2010). Factors Influencing Pupils’ Acceptance of an E-Learning System for Secondary Schools. Journal of Educational Computing Research, 42(1), 63-78.
  • García Jiménez, E., Gil Flores, J., & Rodríguez Gómez, G. (2000). Análisis factorial. Madrid: La Muralla.
  • Gómez Rey, I.; Hernández García, E., & Rico García, M. (2009). Moodle en la enseñanza presencial y mixta del inglés en contextos universitarios. RIED. Revista Iberoamericana de Educación a Distancia, 12 (1), 169-194.
  • Goyal, E., & Purohit, S. (2010). Study of Using Learning Management System in a Management Course. SIES Journal of Management, 6(2), 11-20.
  • Hofacker, C.F. (1984). Categorical judgment scaling with ordinal assumptions. Multivariate Behavioral Research, 19, 91-106.
  • Kirner, T.G., & Saraiva, A.V. (2007). Software Usability Evaluation: an Empirical Study. Paper presented at Proceedings of the 9th International Conference on Enterprise Information Systems. Funchal, Portugal, 459-465.
  • Kline, R. (2005). Principles and practice of structural equation modeling. New York: Guilford Press.
  • Klobas, J. E., & McGill, T. J. (2010). The role of involvement in learning management system success. Journal of Computing in Higher Education, 22(2), 114-134.
  • Labovitz, S (1970). The assignment of numbers to Rank order categories. American Sociological Review, 35, 315-324.
  • Labovitz, S. (1967). Some observations on measurement and statistics. Social Forces, 46, 151-160.
  • Landis J.R. & Koch, G. (1977). The measurement of observer agreement for categorical data. Biometrics (33), 159-174.
  • Lévy Mangin, J.-P. (2006). Modelización con estructuras de covarianzas en ciencias sociales: temas esenciales, avanzados y aportaciones especiales. España: Netbiblo.
  • Lin, Q. (2008). Student satisfactions in four mixed courses in elementary teacher education program. Internet and Higher Education, 11(1), 53-59.
  • López-González, E. (2012). Sugerencias para el análisis de Escalas con Métrica Delicada. Revista Iberoamericana de Evaluación Educativa, 5(1e), 84-105.
  • López-González, E., Pérez-Carbonell, A. & Ramos, G. (2011). Modelos complementarios al análisis factorial en la construcción de escalas ordinales: un ejemplo aplicado a la medida del Clima Social Aula. Revista de Educación, 354, 369-397.
  • Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3), 519-530.
  • Martín-Blas, T., & Serrano-Fernández, A. (2009). The role of new technologies in the learning process: Moodle as a teaching tool in Physics. Computers & Education, 52, 35–44.
  • Martorell, C., González, R., Ordóñez, A. N. A., & Gómez, O. (2011). Estudio confirmatiorio del cuestionario de conducta antisocial (CCA) y su relación con variables de personalidad y conducta antisocial. Revista Iberoamericana de Diagnóstico y Evaluación Psicológica, 1(31), 97-113.
  • Medina, F., & Galván, M. (2007). Imputácion de datos: teoría y práctica. Santiago de Chile: Naciones Unidas, CEPAL, División de Estadística y Proyecciones Económicas.
  • Melton, J. (2006). The LMS Moodle: A Usability Evaluation. Japan: Prefectural University of Kumamoto.
  • Moore, K., & Iida, S. (2010). Students’ perception of supplementary, online activities for Japanese language learning: Groupwork, quiz and discussion tools. Australasian Journal of Educational Technology, 26(7), 966-979.
  • Morales Vallejo, P. (2006). Medición de actitudes en psicología y educación. Construcción de escalas y problemas metodológicos. Madrid: Universidad Pontificia de Comillas.
  • Morales, P., Urosa, B., & Blanco, A. (2003). Construcción de escalas de actitudes tipo Likert. Madrid: La Muralla.
  • Naveh, G., Tubin, D., & Pliskin, N. (2010). Student LMS use and satisfaction in academic institutions: The organizational perspective. Internet and Higher Education, 13(3), 127-133.
  • Nunnally, J.C. (1978). Psychometric theory. New York: McGraw-Hill.
  • Núñez, J.C, Cerezo, R., Bernardo, A., Rosário, P., Valle, A., Fernández, E., & Suárez, N. (2011). Implementation of training programs in self-regulated learning strategies in Moodle format: Results of an experience in higher education. Psicothema 23(2), 274-281
  • Ozkan, S., & Koseler, R. (2009). Multi-dimensional students’ evaluation of e-learning systems in the higher education context: An empirical investigation. Computers & Education, 53(4), 1285-1296.
  • Palmer, S., y Holt, D. (2010). Students’ perceptions of the value of the elements of an online learning environment: looking back in moving forward. Interactive Learning Environments, 18(2), 135-151.
  • Peat, M., y Franklin, S. (2002). Supporting Student Learning: The Use of Computer-based 9. Formative Assesment Modules. British Journal of Educational Technology, 33(5), 515-523.
  • Pérez i Garcias, A. (2006). Internet aplicado a la educación: aspectos técnicos y comunicativos. En J. Cabero (coord.) (2006). Nuevas tecnologías aplicadas a la educación. Madrid: Mc Graw Hill.
  • Richardson, J., & Swan, K. (2003). Examining social presence in online courses in relation to students' perceived learning and satisfaction. Journal of Asynchronous Learning 6 (1), 21-40.
  • Ross, I. (2008). Moodle, la plataforma para la enseñanza y organización escolar. Ikastorratza, e- Revista de Didáctica 2. Recuperado de http://www.ehu.es/ikastorratza/2_alea/moodle.pdf
  • Rottinghaus, P. J., Larson, L. M., & Borgen, F. H. (2003). The relation of self-efficacy and interests: a meta-analysis of 60 samples. Journal of Vocational Behavior, 62(2), 221-236.
  • Rubin, B., Fernandes, R., y Avgerinou, M. D. (2013). The effects of technology on the Community of Inquiry and satisfaction with online courses. Internet and Higher Education, 17, 48-57.
  • Rus, T. I., Pina, F. H., Sánchez Y, J. J. M., & Martínez, O. L. (2011). Adaptación y validación de la escala de actitudes hacia el trabajo en desempleados mayores de 45 años. Revista Iberoamericana de Diagnóstico y Evaluación Psicológica, 2(32), 105-122.
  • Saito, D. S., & Ulbricht, V. R. (2012). Learning Managent Systems and Face-to-Face Teaching in Bilingual Modality (Libras/Portuguese). IEEE Latin America Transactions, 10(5), 2168-2174.
  • Silva Quiroz, J. (2011). Diseño y moderación de entornos virtuales de aprendizaje (EVA). Barcelona: UOC.
  • Sørebø, Ø., Halvari, H., Gulli, V. F., & Kristiansen, R. (2009). The role of self-determination theory in explaining teachers’ motivation to continue to use e-learning technology. Computers & Education, 53 (4), 1177-1187.
  • Soyibo, K., & Hudson, A. (2000). Effects of Computer-assisted Instruction (CAI) on 11th 8. Graders’ Attitudes to Biology and CAI and Understanding of Reproduction in Plants and Animals. Research in Science Technological Education, 18 (2), 191-199.
  • Steyaert, J. (2005). Web based higher education, the inclusion/exclusion paradox. Journal of Technology in Human Services, 23 (1/2), 67-68.
  • Swan, K., Shea, P., Fredericksen, E., Pickett, A., Pelz, W., & Maher, G. (2000). Building Knowledge Building Communities: Consistency, Contact and Communication in the Virtual Classroom. Journal of Educational Computing Research, 23(4), 359-83.
  • Valentine, J. C., Dubois, D. L., & Cooper, H. (2004). The relation between self-beliefs and academic achievement: a meta-analytic review. Educational Psychologist, 39(2), 111-133.
  • Vaughan, N. (2007). Perspectives on Blended Learning in Higher Education. International Journal on E-Learning, 6 (1), 81-94.
  • Vigostsky, L. (1995). Pensamiento y lenguaje. Buenos Aires: Paidós.
  • Weaver, D., Spratt, C., & Nair, C. S. (2008). Academic and student use of a learning management system: Implications for quality. Australasian Journal of Educational Technology, 24 (1), 30-41.
  • Weller, M. (2007). Virtual Learning Environments: using, choosing and developing your VLE. New York: Routledge.
  • Williams van Rooij, S. (2012). Open-source learning management systems: a predictive model for higher education. Journal of Computer Assisted Learning, 28 (2), 114–125.
  • Yueh, H., & Hsu. S. (2008). Designing a learning management system to support instruction. Communications of the ACM, 51 (4), 59- 63.