El concepto de serie numérica. Un estudio a través del modelo de Pirie y Kieren centrado en el mecanismo “folding back”
- M. Laura Delgado Martín 1
- Myriam Codes Valcarce 1
- M. Consuelo Monterrubio Pérez 1
- M. Teresa González Astudillo 1
- 1 Universidad de Salamanca (España)
ISSN: 2254-4313
Año de publicación: 2014
Número: 6
Páginas: 25-44
Tipo: Artículo
Otras publicaciones en: Avances de investigación en educación matemática: AIEM
Resumen
En este artículo se presenta una investigación cuyo objetivo es caracterizar el proceso que sigue un grupo de alumnos universitarios para construir una serie numérica y determinar su convergencia. Para ello se analiza la actividad de dichos alumnos cuando resuelven una tarea en el aula habitual siguiendo el modelo propuesto por Pirie y Kieren. Esto ha permitido describir su progresión a través de los diferentes niveles de comprensión y comprobar la necesidad, en determinadas ocasiones, de realizar una vuelta a niveles inferiores mediante el mecanismo “folding back”. Se han encontrado manifestaciones del folding back de diferente naturaleza.
Referencias bibliográficas
- Carlsen, M. (2010). Appropriating geometric series as a cultural tool: a study of student collaborative Learning. Educational Studies in Mathematics, 74, 95-116. doi: 10.1007/s10649-010-9230-0.
- Codes, M. (2010). Análisis de la comprensión de los conceptos de serie numérica y su convergencia en estudiantes de primer curso de universidad utilizando un entorno computacional. (Tesis doctoral). Universidad de Salamanca, Salamanca, España. http://hdl.handle.net/10366/76452
- Codes, M., Delgado, M. L., González Astudillo, M. T., & Monterrubio, M. C. (2013) Comprensión del concepto de serie numérica a través del modelo de Pirie y Kieren. Enseñanza de las Ciencias, 31(3), 135-154.
- Codes, M., González, M.T., Delgado, M.L., & Monterrubio, M.C. (2013). Growth in the understanding of the concept of infinite numerical series: a glance through Pirie and Kieren theory. International Journal of Mathematical Education in Science and Technology, 44(5), 652-662.
- Codes, M., & Sierra M. (2007). Actividad Rectángulos: Un ejemplo de aplicación de metodologías activas en el aula universitaria de matemáticas. Actas de las IVJornadas internacionales de Innovación Universitaria (2007). Madrid: Universidad Europea de Madrid.
- Delgado, M. L., González, M. T., Monterrubio, C., & Codes, M. (2013). El mecanismo collecting para la comprensión del concepto de serie numérica. En A. Berciano, G. Gutiérrez, A. Estepa & N. Climent (Eds.), Investigación en Educación Matemática XVII (pp. 245-252). Bilbao: SEIEM.
- Dubinsky, E., Weller, K., McDonald, M. A., & Brown, A. (2005). Some historical issues and paradoxes regarding the concept of infinity: an APOS-based analysis: part II. Educational Studies in Mathematics, 60, 253-266.
- González-Martín, A. S., Nardi, E., & Biza, I. (2011). Conceptually-driven and visually-rich tasks in texts and teaching practice: the case of infinite series. International Journal of Mathematical Education in Science and Technology, 42(5), 565-589.
- Kidron, I. (2002). Concept definition, concept image, and the notion of infinite sum in old and new environments. En A. D. Cockbrun & E. Nardi (Eds.), 26th International Conference for the Psychology of Mathematics Education, 3, 209- 216.
- McDonald, M. A., Mathews, D. M., & Strobel, K. H. (2000). Understanding sequences: A tale of two objects, En J. Kaput, A. H. Schoenfeld, & E. Dubinsky (Eds.), Research in collegiate mathematics education. IV. Conference Board of the Mathematical Sciences (CBMS), Issues in Mathematics Education, 8, 77-102
- Martin, L. C. (2008). Folding back and the dynamical growth of mathematical understanding: Elaborating the Pirie–Kieren Theory. The Journal of Mathematical Behavior, 27, 64-85.
- Martínez-Planell, R., Gonzalez, A. C., DiCristina, G., & Acevedo, V. (2012). Students’ conception of infinite series. Educational Studies in Mathematics, 81, 235-249.
- Pirie, S., & Kieren, T. (1992). Creating constructivist environments and constructing creative mathematics. Educational Studies in Mathematics, 23, 505-528.
- Pirie, S., & Kieren, T. (1994). Growth in mathematical understanding: How can we characterize it and how can we represent it? Educational Studies in Mathematics, 26, 165-190.
- Pirie, S., & Martin, L. C. (2000). The role of collecting in the growth of mathematical understanding. Mathematics Education Research Journal, 12(2), 127-146.
- Tall, D. (1991). The psychology of Advanced Mathematical Thinking. En D. Tall (Ed.), Advanced Mathematical Thinking (pp. 3-21). Dordrecht: Kluwer Academic Publishers.
- Warner, L. B. (2008). How do students’ behaviors relate to the growth of their mathematical ideas? Journal of Mathematical Behavior, 27, 206-227.
- Weller, K., Brown, A., Dubinsky, E., McDonald, M., & Stenger, C. (2004). Intimations of infinity. Notices of the American Mathematical Society, 51(7), 741- 750.