Preliminary results on nonparametric facial occlusion detection

  1. LÓPEZ SÁNCHEZ, Daniel 1
  2. GONZÁLEZ ARRIETA, Angélica 2
  1. 1 ACM Member
  2. 2 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Aldizkaria:
ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal

ISSN: 2255-2863

Argitalpen urtea: 2016

Alea: 5

Zenbakia: 1

Orrialdeak: 51-61

Mota: Artikulua

DOI: 10.14201/ADCAIJ2016515161 DIALNET GOOGLE SCHOLAR lock_openSarbide irekia editor

Beste argitalpen batzuk: ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal

Garapen Iraunkorreko Helburuak

Laburpena

The problem of face recognition has been extensively studied in the available literature, however, some aspects of this field require further research. The design and implementation of face recognition systems that can efficiently handle unconstrained conditions (e.g. pose variations, illumination, partial occlusion...) is still an area under active research. This work focuses on the design of a new nonparametric occlusion detection technique. In addition, we present some preliminary results that indicate that the proposed technique might be useful to face recognition systems, allowing them to dynamically discard occluded face parts.

Erreferentzia bibliografikoak

  • Ekenel, H. K., 2009. A robust face recognition algorithm for real-world applications. Ph.D. thesis, Karlsruhe, Univ., Diss., 2009.
  • Hughes, G. P., 1968. On the mean accuracy of statistical pattern recognizers. Information Theory, IEEE Transactions on, 14(1):55–63.
  • Jia, H. and Martinez, A. M., 2008. Face recognition with occlusions in the training and testing sets. In Automatic Face & Gesture Recognition, 2008. FG'08. 8th IEEE International Conference on, pages 1–6. IEEE.
  • http://dx.doi.org/10.1109/afgr.2008.4813410
  • Kazemi, V. and Sullivan, J., 2014. One millisecond face alignment with an ensemble of regression trees. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1867–1874.
  • http://dx.doi.org/10.1109/cvpr.2014.241
  • King, D. E., 2009. Dlib-ml: A Machine Learning Toolkit. Journal of Machine Learning Research, 10:1755–1758.
  • Liu, J., Deng, Y., and Huang, C., 2015. Targeting ultimate accuracy: Face recognition via deep embedding. arXiv preprint arXiv:1506.07310.
  • Martinez, A. M., 1998. The AR face database. CVC Technical Report, 24.
  • Martínez, A. M., 2002. Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(6):748–763.
  • Min, R., Hadid, A., and Dugelay, J.-L., 2011. Improving the recognition of faces occluded by facial accessories. In Automatic Face & Gesture Recognition and Workshops (FG 2011), 2011 IEEE International Conference on, pages 442–447. IEEE.
  • http://dx.doi.org/10.1109/fg.2011.5771439
  • Murphy, K. P., 2012. Machine learning: a probabilistic perspective. MIT press.
  • Ojala, T., Pietikäinen, M., and Harwood, D., 1996. A comparative study of texture measures with classification based on featured distributions. Pattern recognition, 29(1):51–59.
  • http://dx.doi.org/10.1016/0031-3203(95)00067-4
  • Ojala, T., Pietikäinen, M., and Mäenpää, T., 2002. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(7):971–987.
  • Tan, X., Chen, S., Zhou, Z.-H., and Zhang, F., 2005. Recognizing partially occluded, expression variant faces from single training image per person with SOM and soft k-NN ensemble. Neural Networks, IEEE Transactions on, 16(4):875–886.