Representaciones de la generalización de una relación funcional y el vínculo con la mediación del entrevistador
- Jason Ureña 1
- Rafael Ramírez 2
- Marta Molina 2
-
1
Universidad de Granada
info
-
2
Universidad de Salamanca
info
ISSN: 0210-3702, 1578-4126
Año de publicación: 2019
Título del ejemplar: Pensamiento algebraico temprano : estudios desde diversas perspectivas, enfoques y regiones
Volumen: 42
Número: 3
Páginas: 591-614
Tipo: Artículo
Otras publicaciones en: Journal for the Study of Education and Development, Infancia y Aprendizaje
Resumen
The ability to generalize and represent generalizations exhibited by eight fourth-grade students was analysed in this descriptive study, designed around a semi-structured interview involving a task based on the linear functional relationship y = x + 2. The relation of the interviewer’s mediation on students’ representations of generalizations was determined on the grounds of students’ interactions with her. Four forms to represent the generalization of a functional relationship were defined. The findings confirm the importance of mediation in helping students strengthen their ability to recognize, represent and generalize functional relationships.
Información de financiación
Financiadores
-
Ministerio de Economía y Competitividad
- EDU2016-75771-P
-
Universidad de Costa Rica
- Postgraduate studies
Referencias bibliográficas
- Blanton, M. (2008). Algebra and the elementary classroom. Transforming thinking to practice. Portsmouth, NH: Heinemann.
- Blanton, M., Brizuela, B., Gardiner, A., Sawrey, K., & Newman-Owens, A. (2015). A learning trajectory in 6-year-old’s thinking about generalizing functional relationships. Journal for Research in Mathematics Education, 46, 511–558.
- Blanton, M., & Kaput, J. (2004). Elementary grades student´s capacity for functional thinking. In M. Hoines, & A. Fugslestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 135–142). Bergen: PME.
- Blanton, M., & Kaput, J. (2011). Functional thinking as a route into algebra in the elementary grades. In J. Cai, & E. Knuth (Eds.), Early Algebraization: A Global Dialogue from Multiple Perspectives (pp. 5–23). New York, NY: Springer.
- Blanton, M., Levi, L., Crites, T., & Dougherty, B. J. (Eds.). (2011). Developing essential understanding of algebraic thinking for teaching mathematics in grades 3-5. Reston, VA: NCTM.
- Cañadas, M. C., & Molina, M. (2016). Una aproximación al marco conceptual y principales antecedentes del pensamiento funcional en las primeras edades [Approach to the conceptual framework and background of functional thinking in early years]. In E. Castro, E. Castro, J. L. Lupiáñez, J. F. Ruíz, & M. Torralbo (Eds.), Investigación en Educación Matemática. Homenaje a Luis Rico (pp. 209–218). Granada: Comares.
- Carraher, D., Martínez, M., & Schliemann, A. (2008). Early Algebra and mathematical generalization. ZDM Mathematics Education, 40, 3–22.
- Carraher, D., Schliemann, A. D., & Brizuela, B. (2003). Treating operations as functions. Paper presented at the Psychology of Mathematics Education - NA XXII, Tucson, AZ.
- Castro, E., Cañadas, M. C., & Molina, M. (2010). El razonamiento inductivo como generador de conocimiento matemático [Inductive reasoning as a generator of mathematical knowledge]. UNO, 54, 55–67.
- Hitt, F., & González-Martín, A. S. (2016). Generalization, covariation, functions, and calculus. In Á. Gutiérrez, G. C. Leder, & P. Boero (Eds.), The Second Handbook of Research on the Psychology of Mathematics Education (pp. 3–38). Rotterdam: SensePublishers.
- Kaput, J. (2008). What is algebra? What is algebraic reasoning? In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the early grades (pp. 5–17). New York, NY: Lawrence Erlbaum Associates
- Mason, J., Graham, A., & Johnston-Wilder, S. (2005). Developing thinking in algebra. London: The Open University and Paul Chapman Publishing.
- Mason, J., Graham, A., Pimm, D., & Gowar, N. (1985). Routes to roots of algebra. Milton Keynes: The Open University Press.
- Mason, J., & Pimm, D. (1984). Generic examples: Seeing the general in the particular. Educational Studies in Mathematics, 15, 277–287.
- Mata-Pereira, J., & Da Ponte, J.-P. (2017). Enhancing students’ mathematical reasoning in the classroom: Teacher actions facilitating generalization and justification. Educational Studies in Mathematics, 96, 169–186.
- McEldoon, K. L., & Rittle-Johnson, B. (2010). Assessing elementary students’ functional thinking skills: The case of function tables. In P. Brosnan, D. B. Erchick, & L. Flevares (Eds.), Proceedings of the Thirty Second Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education: Optimizing Student Understanding in Mathematics (pp. 202). Columbus, OH: Clearinghouse for Science, Mathematics, and Environmental Education.
- Merino, E., Cañadas, M. C., & Molina, M. (2013). Uso de representaciones y patrones por alumnos de quinto de educación primaria en una tarea de generalización [Representations and patterns used by fifth grade students in a generalization task]. Edma 0-6, 2(1), 24–40.
- Ministerio de Educación, Cultura y Deporte. (2014). Real Decreto 126/2014, de 28 de febrero, por el que se establece el currículo básico de la educación primaria (Vol. BOE N°52, pp. 19349–194420) [Royal Decree 126/2014, February 28th, which establishes the basic curriculum of elementary education]. Madrid: Ministerio de Educación, Cultura y Deporte.
- Molina, M., Ambrose, R., & Del Rio, A. (2018). First encounter with variables by first and third grade spanish students. In C. Kieran (Ed.), Teaching and Learning Algebraic Thinking with 5- to 12-Year-Olds (pp. 261–280). Hamburg: Springer, Cham.
- Pinto, E., Cañadas, M.C., Moreno, A., & Castro, E. (2016, September). Relaciones funcionales que evidencian estudiantes de tercero de educación primaria y sistemas de representación que usan [Functional relationships evidenced by third graders and the representation systems they used]. In J. A. Macías, A. Jiménez, J. L. González, M. T. Sánchez, P. Hernández, C. Fernández, & A. Bercian (Eds.), Investigación en Educación Matemática XX (pp. 417–426). Málaga: SEIEM.
- Polya, G. (1989). ¿Cómo plantear y resolver problemas? [How to solve it?]. Mexico, DF: Trillas.
- Ponte, J. P., Mata-Pereira, J., & Quaresma, M. (2013). Ações do professor na condução de discussões matemáticas [Teacher actions in the conduction of mathematical debates]. Quadrante, 22(1.a), 55–81.
- Radford, L. (2001, July). Factual, contextual and symbolic generalization in algebra. In M. van Den Heuvel-Panhuizen (Ed.), Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 81–88). Utrecht, Holanda.
- Radford, L. (2010). Layers of generality and types of generalization in pattern activities. PNA, 4, 37–62.
- Radford, L. (2018). The emergence of symbolic algebraic thinking in primary school. In C. Kieran (Ed.), Teaching and Learning Algebraic Thinking with 5- to 12-Year-Olds (pp. 3–25). Hamburgo: Springer.
- Smith, E. (2008). Representational thinking as a framework for introducing functions in the elementary curriculum. In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the early grades (pp. 133–160). New York, NY: Lawrence Erlbaum Associates.
- Soller, A. (2001). Supporting social interaction in an intelligent collaborative learning system. International Journal of Artificial Intelligence in Education, 12, 40–62.
- Stephens, A., Ellis, A., Blanton, M. L., & Brizuela, B. M. (2017). Algebraic thinking in the elementary and middle grades. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 386–420). Reston, VA: NCTM.
- Warren, E. (2006, July). Teacher actions that assist young students write generalizations in words and in symbols. In J. Novotná, M. Krátka, & N. Stehlíková (Eds.), Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 5, pp. 377–384). Praga: PME.
- Warren, E., Trigueros, M., & Ursini, S. (2016). Research on the learning and teaching of algebra. In Á. Gutiérrez, G. C. Leder, & P. Boero (Eds.), The Second Handbook of Research on the Psychology of Mathematics Education (pp. 73–108). Rotterdam: SensePublishers.