Phospholipid classes and fatty acid composition of ewe's and goat's milk

  1. Zancada, L.
  2. Pérez Díez, F.
  3. Sánchez Juanes, Fernando
  4. García Pardo, Luis Ariel
  5. Hueso, P.
Revista:
Grasas y aceites

ISSN: 0017-3495 1988-4214

Año de publicación: 2013

Volumen: 64

Número: 3

Páginas: 304-310

Tipo: Artículo

DOI: 10.3989/GYA.095312 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Grasas y aceites

Objetivos de desarrollo sostenible

Resumen

The content, distribution of individual species, and the fatty acid composition of phospholipids (PL) from ewe�s and goat�s milk were analyzed. The binding of enterotoxigenic and uropathogenic Escherichia coli strains to PL and the inhibition of bacterial hemagglutination by PL were addressed using high performance thin-layer chromatography-overlay assays and microtiter plates, respectively. Ovine and caprine milk contained more PL than bovine milk but less than human milk. The profile of individual PL was similar, including sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol in both ovine and caprine milk. Regarding the fatty acid composition, a high content of long-chain fatty acids (more than C16) and unsaturated fatty acids, with C18:1 as the most abundant was found in ovine and caprine milk PL. Ovine milk has longer and less saturated fatty acids while caprine milk has shorter and more saturated ones. Neither the adhesion of any bacterial strains assayed to the individual PL from ovine or caprine milk nor the inhibition of bacterial hemagglutination by PL were observed. These are important constituents of the milk fat globule membrane, but it seems that they do not play a role in the defence of new-borns against bacteria if the results obtained are taken into account.

Referencias bibliográficas

  • Astaire JC, Ward R, German JB, Jimenez-Flores R. 2003. Concentration of polar MFGM lipids from buttermilk by microfiltration and supercritical fluid extraction. J. Dairy Sci. 86, 2297-2307. http://dx.doi.org/10.3168/jds.S0022-0302(03)73822-3
  • Bitman J, Wood DL.1990. Changes in milk fat phospholipids during lactation. J. Dairy Sci. 73, 1208-1216. http://dx.doi.org/10.3168/jds.S0022-0302(90)78784-X
  • Boyazoglu J, Morand-Fehr P. 2001. Mediterranean dairy sheep and goat products and their quality. A critical review. Small Rum. Res. 40, 1-11. http://dx.doi.org/10.1016/S0921-4488(00)00203-0
  • Boyd LC, Drye NC, Hansen AP. 1999. Isolation and characterization of whey phospholipids. J Dairy Sci. 82, 2550-2557. http://dx.doi.org/10.3168/jds.S0022-0302(99)75509-8
  • Cerbulis J, Parks OW, Farrell HM, JR. 1983. Fatty acid composition of polar lipids in goats' milk. Lipids 18, 55-58. http://dx.doi.org/10.1007/BF02534691 PMid:6835035
  • Dewettinck K, Rombaut R, Thienpont N, Trung Le T, Messens K, Camp JV. 2008. Nutritional and technological aspects of milk fat globule membrane material. Int. Dairy J. 18, 436-457. http://dx.doi.org/10.1016/j.idairyj.2007.10.014
  • Duan RD, Nilsson Å. 2009. Metabolism of sphingolipids in the gut and its relation to inflammation and cancer development. Prog. Lipid Res. 48, 62-72. http://dx.doi.org/10.1016/j.plipres.2008.04.003 PMid:19027789
  • Evans DG, Evans DJ. 1978. New surface-associated heat-labile colonization factor antigen (CFA/II) produced by enterotoxigenic Escherichia coli of serogroups O6 and O8. Infect. Immun. 21, 638-647. PMid:80383 PMCid:422040
  • Guineé PA, Veldkamp J, Jansen WH. 1977. Improved Minca medium for the detection of K99 antigen in calf enterotoxigenic strains of Escherichia coli. Infect. Immun. 15, 676-678. PMid:321358 PMCid:421422
  • Karlsson KA, Stromberg N. 1987. Overlay and solidphase analysis of glycolipid receptors for bacteria and viruses. Methods Enzymol. 138, 220-232. http://dx.doi.org/10.1016/0076-6879(87)38019-X
  • Küllenberg D, Taylor LA, Schneider M, Massing U. 2012. Health effects of dietary phospholipids. Lipids Health Dis. 11, 3-18. http://dx.doi.org/10.1186/1476-511X-11-3 PMid:22221489 PMCid:3316137
  • Kuksis A. 1992. Yolk lipids. Biochim. Biophys. Acta 1124, 205-222. http://dx.doi.org/10.1016/0005-2760(92)90132-F
  • Lock AL, Bauman DE. 2004. Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids 39, 1197-1206. http://dx.doi.org/10.1007/s11745-004-1348-6 PMid:15736916
  • Michaelidou AM. 2008. Factors influencing nutritional and health profile of milk and milk products, Small Rum. Res. 79, 42-50. http://dx.doi.org/10.1016/j.smallrumres.2008.07.007
  • Miura S, Tanaka M, Suzuki A, Sato K. 2004. Application of phospholipids extracted from bovine milk to the reconstitution of cream using butter oil. J. Am. Oil Chem. Soc. 81, 97-100. http://dx.doi.org/10.1007/s11746-004-0863-1
  • Morin P, Jiménez-Flores R, Pouliot Y. 2007. Effect of processing on the composition and microstructure of buttermilk and its milk fat globule membranes. Int. Dairy J. 17, 1179-1187. http://dx.doi.org/10.1016/j.idairyj.2007.03.010
  • Morrison WR. 1968. The distribution of phospholipids in some mammalian milks. Lipids 3, 101-103. http://dx.doi.org/10.1007/BF02530978 PMid:17805851
  • Morrison WR, Smith LM. 1967. Fatty acid composition of milk phospholipids. II. Sheep, Indian buffalo and human milks. Lipids 2, 178-182. http://dx.doi.org/10.1007/BF02530919 PMid:17805746
  • Park YW, Juárez M, Ramos M, Haenlein GFW. 2007. Physico-chemical characteristics of goat and sheep milk. Small Rum. Res. 68, 88-113. http://dx.doi.org/10.1016/j.smallrumres.2006.09.013
  • Rabasco A, González ML. 2000. Lipids in pharmaceutical and cosmetic preparations. Grasas y Aceites 51, 74-96.
  • Raynal-Ljutovac K, Lagriffoul G, Paccard P, Guillet I, Chilliard Y. 2008. Composition of goat and sheep milk products: An update. Small Rum. Res. 79, 57-72. http://dx.doi.org/10.1016/j.smallrumres.2008.07.009
  • Rombaut R, Dewettinck K. 2006. Properties, analysis and purification of milk polar lipids. Int. Dairy J. 16, 1362-1373. http://dx.doi.org/10.1016/j.idairyj.2006.06.011
  • Rouser G, Fleischer S, Yamamoto A. 1970. Two dimensional thin-layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5, 494-496. http://dx.doi.org/10.1007/BF02531316 PMid:5483450
  • Sánchez-Juanes F, Alonso JM, Zancada L, Hueso P. 2009a. Distribution and fatty acid content of phospholipids from bovine milk and bovine milk fat globule membranes. Int. Dairy J. 19, 273-278. http://dx.doi.org/10.1016/j.idairyj.2008.11.006
  • Sánchez-Juanes F, Alonso JM, Zancada L, Hueso P. 2009b. Glycosphingolipids from bovine milk and milk fat globule membranes; a comparative study. Adhesion to enterotoxigenic Escherichia coli strains. Biol. Chem. 390, 31-40. http://dx.doi.org/10.1515/BC.2009.003 PMid:18937626
  • Sánchez-Yagüe J, Llanillo M. 1986. Lipid composition of subcellular particles from sheep platelets. Location of phosphatidylethanolamine and phosphatidylserine in plasma membrane and platelet liposomes. Biochim. Biophys. Acta 856, 193-201. http://dx.doi.org/10.1016/0005-2736(86)90028-3
  • Spence AJ, Jiménez-Flores R, Quian M, Goddik L. 2009. Phospholipid enrichment in sweet and whey cream buttermilk powders using supercritical fluid extraction. J. Dairy Sci. 92, 2373-2381. http://dx.doi.org/10.3168/jds.2008-1534 PMid:19447969
  • Sprong RC, Hulstein MFE, Van der Meer R. 2002. Bovine milk fat components inhibit food-borne pathogens. Int. Dairy J. 12, 209-215. http://dx.doi.org/10.1016/S0958-6946(01)00139-X
  • Thompson AK, Singh H. 2006. Preparation of liposomes from milk fat globule membrane phospholipids using a microfluidizer. J. Dairy Sci. 89, 410-419. http://dx.doi.org/10.3168/jds.S0022-0302(06)72105-1
  • Vanier MT, Holm M, Ohman R, Svennerholm L. 1971. Developmental profiles of gangliosides in human and rat brain. J. Neurochem. 18, 581-592. http://dx.doi.org/10.1111/j.1471-4159.1971.tb11988.x PMid:5581573
  • Zancada L, Sánchez-Juanes F, Alonso JM, Hueso P. 2010. Neutral glycosphingolipid content of ovine milk. J. Dairy Sci. 93, 19-26.