Diseño Simultáneo de Proceso y Control de una Torre Sulfitadora de Jugo de Caña de Azúcar

  1. Lamanna, Rosalba
  2. Vega, Pastora
  3. Revollar, Silvana
  4. Álvarez, Hernán
Revista:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Año de publicación: 2009

Volumen: 6

Número: 3

Páginas: 32-43

Tipo: Artículo

DOI: 10.1016/S1697-7912(09)70262-6 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista iberoamericana de automática e informática industrial ( RIAI )

Resumen

Este trabajo se aborda el problema de diseño y control de una planta perteneciente a una etapa clave del proceso de obtención del azúcar de caña como es la clarificación. Se presenta una aproximación novedosa al problema de diseño y control simultáneo del proceso considerando tanto la controlabilidad de estado (basada en métricas de controlabilidad práctica) como la controlabilidad de salida (basada en índices dinámicos de control), tomando como ejemplo el caso de la torre sulfitadora. Esta propuesta se traduce en un problema de optimización no lineal donde se imponen restricciones sobre las condiciones de operación de la planta, las medidas de controlabilidad de estado y algunos índices de desempeño a lazo cerrado, mientras se minimizan los costos de inversión, operación y control. El problema de optimización se resolvió satisfactoriamente empleando algoritmos genéticos.

Referencias bibliográficas

  • Alvarez, H., Lamanna, R., Revollar, S. y Vega, P. (2009) Modelo de base fenomenonlógica de una sulfitadora de jugo de caña de azúcar. (VWHQž RIAI, Número especial industria azucarera.
  • AsbjIrnsen, O.A. (1972). Reaction invariants in the control of Cenicaña. (2006). Valores objetivos para la extracción de sacarosa en el proceso de molienda de caña de azúcar. Carta trimestral. No. 2. Centro de Investigación de la Caña de Azúcar de Colombia (Cenicaña).
  • Fjeld, M., AsbjIrnsen, O.A. and Astrom, K.J. (1974). Reaction invariants and their importance in the analysis of eigenvectors, state observability and controllability of the continuous stirred tank reactor. Chem Eng. Science. Vol. 29.
  • De Prada, C., Vega, P. and Alonso, L. (1984). Modelling and simulation of a sulfitation tower for adaptive control. Proceedings of the 11th IASTED Conference on Applied Modelling and Simulation.
  • Douglas, J.M. (1988). Conceptual Design of chemical Processes. McGraw-Hill.
  • Emerson (2004). Application data sheet ADS 2000-01/rev_A. July 2004.
  • Francisco, M. y Vega, P. (2006). Diseño Integrado de procesos de depuración de aguas utilizando Control Predictivo Basado en Modelos. Rev. Iberoamericana de Automática e Informática Industrial, Vol. 3, nº 4. pp 88-98.
  • Fisher, W.R., Doherty, M.F., y Douglas, J.M. (1988). The Interface Between Design and Control 1. Process Controllability. Ind. Eng. Chem. Res., 27, 597-605.
  • Gen, M. y Chen, R. (2000). Genetic algorithms and engineering optimisation. J. W. and Sons.
  • Gil, A., Vega, P. y Francisco, M. (2001). Integrated design of a pH process. Identification and control conference Proceedings.
  • Goldberg, D.F. (1989) Genetic Algorithm in Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA.
  • Gustaffson, T.K. (1982). Calculation of the pH value of mixtures. Chem. Eng. Sci. Vol. 37. No. 3.
  • Gutiérrez, G. y P. Vega. (2002). Integrated design of chemical processes and their control system including closed loop properties for disturbances rejection. Proceedings 15th IFAC Triennal World Congress. Barcelona.
  • Ingenio La Unión S.A. (2007). Comentarios de operación zafra 2006-2007. Comunicación personal. Guatemala.
  • Hedrick, J.K. y Girard, A. (2005). Control of nonlinear dynamic systems: Theory and applications. Berkeley Press.
  • Hermann, R. y Krener, A.J. (1977). Nonlinear Controllability and Observability. IEEE Trans. Aut. Control, 5. 1977.
  • Kim, Y. (1997). Structural Controllability Evaluation of a Nonlinear Chemical Processes Represented by DifferentialAlgebraic Equations. M.Sc. Thesis. Seoul National University, Korea.
  • Kookos I. and J. Perkins. (2001). An algorithm for simultaneous process design and control. Ind. Eng. Chem. Res. 40, 4079.
  • Light, Truman S. (1997). Industrial use and application of ion selective electrodes. Journal of Chemical Education. Vol. 74 pp171-177.
  • Luyben, W. (1993). Trade-offs between design and control in chemical reactor systems. J. Proc. Cont., 3, 17.
  • Luyben, M. y C. Floudas. (1994). Analyzing the interaction of design and control–1. A multiobjective framework and application to binary distillation synthesis. Comp. Chem. Eng. 18, 933.
  • Mondal, M.K. (2007). Experimental determination of dissociation constatnt, Henry’s constant, heat of reaction, SO2 absorbed and gas bubble-liquid interfacial area for dilute sulphur dioxide absorption into water. Fluid Phase Equilibria, 253, 98-107.
  • Narraway y Perkins. (1994). Selection of process control structure based en economics. Comp. Chem. Eng., 18, S511- S515.
  • Ochoa, S., Alvarez, H. y Aguirre, J. (2004). Using Controllability for Chemical Equipment Design as a First Step to Integrated Design. X Convención Internacional y Feria Informática 2004 - XI Congreso Latinoamericano de Control Automático. La Habana- Cuba.
  • Ochoa, S. (2005). A methodology for the design-control integration in state-space. Master Thesis (in Spanish). National University of Colombia. www.unalmed.edu.co/~hdalvare
  • Revollar, S, Lamanna, R. y P Vega. (2005). Algorithmic synthesis and integrated design for activated sludge processes using genetic algorithms. Proceedings 15th European Symposium on Computer Aided Process Engineering ESCAPE-15, pp. 739-744. Barcelona
  • Revollar, S., Lamanna, R. y P Vega. (2006). Genetic Algorithms for simultaneous design and control of Continuous Stirred Tank Reactor System. Proceedings Chemical Process Control 7. Lake Louise.
  • Rudolph, G. (1994). Convergence analysis for canonical genetic algorithms. IEEE Transactions on Neural Network. pp. 96- 101.
  • Schweiger, C and Floudas, C. (1997). Interaction of design and control: Optimization with dynamic models. In W. Hager and P. Pardalos (Eds.) Optimal control: Theory, algorithms and Applications. Pp. 388-435. Kluwer Academic Publishers.
  • Vega, P. (1987). Formulaciones adaptivas para reguladores PID. Tesis Doctoral. Universidad de Valladolid.
  • Vose, M. D. (1999). Simple genetic algorithm: Foudation and Theory. Ann Arbor, MI: MIT Press.
  • Walas, S. (1990). Chemical Process Equipment. Selection and Design. Butterworth-Heinemann, USA.
  • Whitley, D. (1992). An executable model of a simple genetic algorithm. In D. Whitley (Ed.), Foundations of Genetic algorithms II. pp 45-62.