Validación de un modelo de análogos para la predicción de precipitación y nieve en la Sierra de Guadarrama

  1. Álvaro Subias 1
  2. Álvaro Pascual 1
  3. María Luisa Martín 2
  4. Francisco Valero 1
  5. María Yolanda Luna 3
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  2. 2 Universidad de Valladolid
    info

    Universidad de Valladolid

    Valladolid, España

    ROR https://ror.org/01fvbaw18

  3. 3 Agencia Estatal de Meteorología
    info

    Agencia Estatal de Meteorología

    Madrid, España

    ROR https://ror.org/04kxf1r09

Book:
Cambio climático. Extremos e impactos: [ponencias presentadas al VIII Congreso Internacional de la Asociación Española de Climatología]
  1. Concepción Rodríguez Puebla (coord.)
  2. Antonio Ceballos Barbancho (coord.)
  3. Nube González Reviriego (coord.)
  4. Enrique Morán Tejeda (coord.)
  5. Ascensión Hernández Encinas (coord.)

Publisher: Asociación Española de Climatología

ISBN: 978-84-695-4331-3

Year of publication: 2012

Pages: 177-186

Congress: Asociación Española de Climatología. Congreso (8. 2012. Salamanca)

Type: Conference paper

Abstract

Dynamic meteorological models have drawbacks in forecasting highly dependent variables of parameterizations or local processes, such as precipitation and snow. Alternatively, statistical models give estimations based on statistical relationships between input variables and output variables without information about related (lineal or non lineal) physical processes. The statistical analog models are based on finding similar atmospheric situations in an historical data base to any particular atmospheric situation to be modeled. The addition of different variables in the analog searching, includes heterogeneity that should be taken into account in the mathematical methodology in order to optimize the analog model. The present work shows the calibration process of an analog model for forecasting of precipitation and snow in a complex terrain. Several probabilistic results are shown in an area with 38 stations in the Sierra of Guadarrama (inner area of the Iberian Peninsula).