Self-Organizing Maps to Validate Anti-Pollution Policies
- Herrero, Álvaro 1
- Tricio, Verónica 2
- Corchado, Emilio 3
- Arroyo, Ángel 1
- Cambra, Carlos 1
- 1 Grupo de Inteligencia Computacional Aplicada (GICAP), Departamento de Ingeniería Civil, Escuela Politécnica Superior, Universidad de Burgos, 09006 Burgos, Spain
- 2 Departmento de Física, Facultad de Ciencias, Universidad de Burgos, 09002 Burgos, Spain
- 3 Departamento de Informática y Automática, University of Salamanca, Salamanca, Spain
ISSN: 1367-0751, 1368-9894
Ano de publicación: 2019
Volume: 28
Número: 4
Páxinas: 596-614
Tipo: Artigo
Outras publicacións en: Logic Journal of the IGPL
Resumo
Abstract This study presents the application of self-organizing maps to air-quality data in order to analyze episodes of high pollution in Madrid (Spain’s capital city). The goal of this work is to explore the dataset and then compare several scenarios with similar atmospheric conditions (periods of high Nitrogen dioxide concentration): some of them when no actions were taken and some when traffic restrictions were imposed. The levels of main pollutants, recorded at these stations for eleven days at four different times from 2015 to 2018, are analyzed in order to determine the effectiveness of the anti-pollution measures. The visualization of trajectories on the self-organizing map let us clearly see the evolution of pollution levels and consequently evaluate the effectiveness of the taken measures, after and during the protocol activation time.
Referencias bibliográficas
- Akita, (2014), Environmental Science & Technology, 48, pp. 4452, 10.1021/es405390e
- Arroyo, (2017), Journal of Applied Logic, 24, pp. 76, 10.1016/j.jal.2016.11.026
- Arroyo, (2017), International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding, pp. 286
- Aznarte, (2017), Environmental Pollution, 229, pp. 321, 10.1016/j.envpol.2017.05.079
- Binaku, (2017), Air Quality, Atmosphere & Health, 10, pp. 1227, 10.1007/s11869-017-0507-7
- Casteleiro-Roca, (2019), Complexity, 2019, 10.1155/2019/6317270
- Council of Madrid City
- Council of Madrid City
- Council of Madrid City
- Council of Madrid City
- Cuzzocrea, (2018), Journal of Ambient Intelligence and Humanized Computing, pp. 1
- Danielsson, (1980), Computer Graphics and Image Processing, 14, pp. 227, 10.1016/0146-664X(80)90054-4
- European Union
- Franklin, (2015), Current Problems in Cardiology, 40, pp. 207, 10.1016/j.cpcardiol.2015.01.003
- Government of Spain
- Horenko, (2010), Dynamics of Atmospheres and Oceans, 49, pp. 164, 10.1016/j.dynatmoce.2009.04.003
- Wolfram MathWorld
- Air Resource Laboratoy
- Jain, (2012), International Journal of Computer Science and Management Research, 3, pp. 68
- Karaca, (2010), Atmospheric Environment, 44, pp. 892, 10.1016/j.atmosenv.2009.12.006
- Kohonen, (1988), Self Organization and Associative Memory, 10.1007/978-3-662-00784-6
- Kohonen, (1990), Proceedings of the IEEE, 78, pp. 1464, 10.1109/5.58325
- Kolehmainen, (2000), Environmental Monitoring and Assessment, 65, pp. 277, 10.1023/A:1006498914708
- Kurt, (2010), Expert Systems with Applications, 37, pp. 7986, 10.1016/j.eswa.2010.05.093
- Laboratory of Computer and Information Science
- Monteiro, (2012), Atmospheric Environment, 56, pp. 184, 10.1016/j.atmosenv.2012.03.069
- Pintea, (2018), Logic Journal of the IGPL, 27, pp. 137, 10.1093/jigpal/jzy028
- Prada, (2017)
- PubChem
- Sammon, (1969), IEEE Transactions on Computers, 100, pp. 401, 10.1109/T-C.1969.222678
- Tsai, (2010), Journal of Artificial Intelligence, 3, pp. 119, 10.3923/jai.2010.119.134
- Van Der, (2009), Journal of Machine Learning Research, 10, pp. 66
- Verma, (2012), International Journal of Engineering Research and Applications (IJERA), 2, pp. 1379
- Voronoi, (1908), Journal für die Reine und Angewandte Mathematik, pp. 97, 10.1515/crll.1908.133.97