Detecting Textual Information in Images from Onion Domains Using Text Spotting

  1. Pablo Blanco 1
  2. Eduardo Fidalgo 1
  3. Enrique Alegre 1
  4. Mhd Wesam Al-Nabki 1
  1. 1 Universidad de León
    info

    Universidad de León

    León, España

    ROR https://ror.org/02tzt0b78

Libro:
XXXIX Jornadas de Automática: actas. Badajoz, 5-7 de septiembre de 2018
  1. Inés Tejado Balsera (coord.)
  2. Emiliano Pérez Hernández (coord.)
  3. Antonio José Calderón Godoy (coord.)
  4. Isaías González Pérez (coord.)
  5. Pilar Merchán García (coord.)
  6. Jesús Lozano Rogado (coord.)
  7. Santiago Salamanca Miño (coord.)
  8. Blas M. Vinagre Jara (coord.)

Editorial: Universidad de Extremadura

ISBN: 978-84-9749-756-5 978-84-09-04460-3

Año de publicación: 2018

Páginas: 975-982

Congreso: Jornadas de Automática (39. 2018. Badajoz)

Tipo: Aportación congreso

DOI: 10.17979/SPUDC.9788497497565.0975 DIALNET GOOGLE SCHOLAR lock_openRUC editor

Objetivos de desarrollo sostenible

Resumen

Debido a los esfuerzos de diferentes autoridades en la lucha contra las actividades ilegales en las redes Tor, los comerciantes han desarrollado nuevas formas de eludir las herramientas de monitoreo utilizadas para obtener evidencia de dichas actividades. En particular, la incorporación de contenido textual en objetos gráficos evita que el análisis de texto, utilizando algoritmos de Procesamiento de Lenguaje Natural (NLP), se pueda usar para ver dichos contenidos web de cebolla. En este documento, presentamos un marco de Text Spotting dedicado a detectar y reconocer información textual en imágenes alojadas en dominios de cebolla. Encontramos que la Red de propuestas de texto conexionista y la Red neuronal recurrente convolucional alcanzan 0.57 F-Measure cuando se ejecuta la tubería combinada en un subconjunto de 100 imágenes etiquetadas manualmente obtenidas del conjunto de datos TOIC. También identificamos los parámetros que tienen una influencia crítica en los resultados de Text Spotting. La técnica propuesta podría apoyar herramientas para ayudar a las autoridades a detectar estas actividades.