Datos textuales como elementos activos en sensometría

  1. Álvarez Esteban, Ramón
  2. Aguado Rodríguez, Pedro José
Revista:
Pecunia: revista de la Facultad de Ciencias Económicas y Empresariales
  1. Mures Quintana, María Jesús (coord.)

ISSN: 1699-9495

Año de publicación: 2012

Título del ejemplar: Estadística aplicada a la Investigación Cuantitativa = Applied statistics to Quantitative Research

Número: 1

Páginas: 31-51

Tipo: Artículo

DOI: 10.18002/PEC.V0I2012.1106 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Pecunia: revista de la Facultad de Ciencias Económicas y Empresariales

Objetivos de desarrollo sostenible

Resumen

La utilización de datos textuales en estudios estadísticos sobre sensometría generalmente se ha realizado tratando de explicar e interpretar los resultados alcanzados a partir de datos cuantitativos. Este trabajo muestra una metodología que permite utilizar datos textuales como elementos activos. Dos catas de vinos ilustran el procedimiento

Referencias bibliográficas

  • Abdi, H., Valentin, D., Chollet, D. y Chrea, C. (2007). Analyzing assessors and products in sorting tasks: DISTATIS, theory and applications. Food Quality and Preference, 18, 627-640.
  • Berglund, B., Berglund, U., Engen, T. y Ekman, G. (1973). Multidimensional analysis of twenty-one odors. Scandinavian Journal of Psychology, 14, 131-137.
  • Brochet, F. y Dubourdieu, D. (2001). Wine Descriptive Language Supports Cognitive Specificity of Chemical Senses. Brain and Language, 77(2), 187-196.
  • Campo, E., Ballester, J., Langlois, J., Dacremont, C. y Valentin, D. (2010). Comparison of conventional descriptive analysis and a citation frequency-based descriptive method for odor profiling: An application to Burgundy Pinot noir wines. Food Quality and Preference, 21, 44-55.
  • Delarue, J. y Sieffermann, J-M. (2004). Sensory mapping using Flash profile. Comparison with a conventional descriptive method for the evaluation of the flavour of fruit dairy products. Food Quality and Preference, 15, 383-392.
  • Escofier, B. y Pagès, J. (1990). Analyses factorielles simples et multiples: Objectifs, méthodes, interprétations. Paris: Dunod.
  • Escofier, B. y Pagès, J. (1994). Multiple factor analysis (AFMULT package). Computational Statistics and Data Analysis, 18, 121-140.
  • Gower, J.C. y Dijksterhuis, G.B. (2004). Procrustes problems. Oxford University Press.
  • Husson, F., Lê, S. y Mazet, J. (2007). FactoMineR: Factor Analysis and Data Mining with R.R package version 2.4.0, URL http://factominer.free.fr/ (accessed September 2010).
  • Josse, J., Pagès, J. y Husson, F. (2008). Testing the significance of the RV coefficient.
  • Computational Statistics and Data Analysis, 53, 82-91.
  • Krzanowski, W.J. (1990). Principles of multivariate analysis, a user's perspective. Oxford Statistical Science Series.
  • Lawless, H.T., Sheng, N. y Knoops, S. (1995). Multidimensional-scaling of sorting data applied to cheese perception. Food Quality and Preference, 6, 91-98.
  • Labbé, D. (1990). Normes de dépouillement et procédures d’analyse des textes politiques, CERAT.
  • Labbé, D., Rytz, A. y Hugi, A. (2004). Training is a critical step to obtain reliable product profiles in a real food industry context. Food Quality and Preference, 15, 341-348.
  • Lebart, L., Salem, A. y Berry, L. (1998). Exploring textual data. Dordrecht, Boston: Kluwer Academic Publisher.
  • Lelièvre, M., Chollet, S., Abdi, H. y Valentin, D. (2008). What is the validity of the sorting task for describing beers? A study using trained and untrained assessors. Food Quality and Preference, 19, 697-703.
  • Pagès, J. (2003). Recueil direct de distances sensorielles: Application à l’évaluation de dix vins blancs du Val-de-Loire. Sciences des Aliments, 23, 679-688.
  • Pagès, J. (2005). Collection and analysis of perceived product interdistances using multiple factor analysis: application to the study of 10 white wines from the Loire Valley. Food Quality and Preference, 16(7), 642-649.
  • Perrin, L. y Pagès, J. (2009). Construction of a product space from the ultra-flash profiling method: application to 10 red wines from the Loire Valley. Journal of Sensory Studies, 24(3), 372-395.
  • Sauvageot, F., Urdapilleta, I. y Peyron, D. (2006). Within and between variations of texts elicited from nine wine experts. Food Quality and Preference, 17(6), 429-444.
  • Takane, Y. (1980). Analysis of categorizing behavior by a quantification method. Behaviormetrika, 8, 75-86.
  • Takane, Y. (1982). IDSORT: An individual differences multidimensional scaling for sorting data.
  • Behavior Research Methods and Instrumentation, 14, 546.
  • Williams, E.J. (1949). Experimental designs balanced for the estimation of residual effects of treatments. Australian Journal of Scientific Research, Ser. A 2, 149-168.