Vehicle routing for the urgent delivery of face shields during the COVID-19 pandemic

  1. Laguna, Manuel
  2. Pacheco, Joaquín
  1. 1 Universidad de Burgos
    info

    Universidad de Burgos

    Burgos, España

    ROR https://ror.org/049da5t36

  2. 2 University of Colorado Boulder
    info

    University of Colorado Boulder

    Boulder, Estados Unidos

    ROR https://ror.org/02ttsq026

Revue:
Journal of Heuristics

ISSN: 1381-1231 1572-9397

Année de publication: 2020

Volumen: 26

Número: 5

Pages: 619-635

Type: Article

DOI: 10.1007/S10732-020-09456-8 GOOGLE SCHOLAR lock_openAccès ouvert editor

D'autres publications dans: Journal of Heuristics

Objectifs de Développement Durable

Références bibliographiques

  • Andrés, D.: Las matemáticas al servicio de la lucha contra el coronavirus. Retrieved May 18, 2020 from El Correo de Burgos: https://elcorreodeburgos.elmundo.es/articulo/burgos/matematicas-servicio-lucha-coronavirus/20200517201134362269.html (2020)
  • Antolín, M.: Objetivo: más tiempo solidario para hacer frente al Covid-19. Retrieved May 13, 2020 from ABC Castilla y León: https://www.abc.es/espana/castilla-leon/abci-objetivo-mas-tiempo-solidario-para-hacer-frente-covid-19-202005131158_noticia.html (2020)
  • Blanco, J.: La Universidad de Burgos gana la iniciativa #innovacionfrentealvirus. Retrieved May 12, 2020 from La Razón: https://www.larazon.es/castilla-y-leon/20200512/duxdtjmc2zaqho4hl56dclipyq.html (2020)
  • Campbell, A.M., Vandenbussche, D., Hermann, W.: Routing for relief efforts. Transp. Sci. 42(2), 127–145 (2008)
  • Campos, V., Glover, F., Laguna, M., Martí, R.: An experimental evaluation of a scatter search for the linear ordering problem. J. Glob. Optim. 21, 397–414 (2001)
  • Duque, D., Morton, D.P., Singh, B., Du, Z., Pasco, R., Meyers, L.A.: COVID-19: How to relax social distancing if you must. (2020). https://doi.org/10.1101/2020.04.29.20085134
  • Feo, T.A., Resende, M.: Greedy randomized adaptive search procedures. J. Glob. Optim. 6, 109–133 (1995)
  • García, B.: Ahorro de tiempo en el reparto de pantallas protectoras. Retrieved April 23, 2020 from diarioburgos.es: https://www.diariodeburgos.es/noticia/Z7F34098E-0816-381C-A50A86B598D1A4C6/Ahorro-de-tiempo-en-el-reparto-de-pantallas-protectoras (2020)
  • Glover, F.: Tabu search—part I. Informs J. Comput. 1(3), 190–206 (1989)
  • Glover, F.: Tabu search—part II. Informs J. Comput. 2(1), 4–32 (1990)
  • Glover, F., Laguna, M.: Tabu Search. Springer, New York (1997)
  • Grasas, A., Ramalhinho, H., Pessosa, L. S., Resende, M. G., Caballé, I., Barba, N.: On the improvement of blood sample collection at clinical laboratories. Retrieved January 9, 2014 from BMC Health Services Research: https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-14-12 (2014)
  • Jozefowiez, N., Semet, F., Talbi, E.-G.: An evolutionary algorithm for the vehicle routing problem with route balancing. Eur. J. Oper. Res. 195(3), 761–799 (2009)
  • Li, Y., Chung, S.-H.: Disaster relief routing under uncertainty: a robust optimization approach. IISE Trans. 15(8), 869–886 (2019)
  • Narasimha, K.V., Kivelevitch, E., Sharma, B.K.: An ant colony optimization technique for solving min–max multi-depot vehicle routing problem. Swarm Evol. Comput. 13, 63–73 (2013)
  • Özdamar, L., Wei, Y.: Greedy neighborhood search for disaster relief and evacuation logistics. IEEE Intell. Syst. 23(1), 14–23 (2008)
  • Pacheco, J., Caballero, R., Laguna, M., Molina, J.: Bi-objective bus routing: an application to school buses in rural areas. Transp. Sci. 47(3), 397–411 (2013)
  • Qin, J., Ye, Y., Cheng, B., Zhao, X., Ni, L.: The emergency vehicle routing problem with uncertain demand under sustainability environments. Sustainability 9, 288 (2017)
  • Wohlgemuth, S., Oloruntoba, R., Calusen, U.: Dynamic vehicle routing with anticipation in disaster relief. Socio-Econ. Plan. Sci. 46(4), 261–271 (2012)
  • Xu, Z., Xu, l, Li, C.-L.: Approximation results for min-max path cover problems in vehicle routing. Nav. Res. Logist. 57(8), 728–748 (2010)
  • Yakici, E.: A heuristic approach for solving a rich min–max vehicle routing problem with mixed fleet and mixed demand. Comput. Ind. Eng. 109, 288–294 (2017)