An Extension of ε-Insensitive Hebbian Learning to Form a Non-Interfering Basis.

  1. Fyfe, Colin 1
  2. Corchado, Emilio 1
  1. 1 Applied Computational Intelligence Research Unit, The University of Paisley, Scotland
Revista:
International Journal of Computational Intelligence and Applications

ISSN: 1469-0268 1757-5885

Ano de publicación: 2003

Volume: 03

Número: 03

Páxinas: 281-296

Tipo: Artigo

DOI: 10.1142/S1469026803001002 GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: International Journal of Computational Intelligence and Applications

Obxectivos de Desenvolvemento Sustentable

Resumo

We review an extension of Hebbian learning which has been called ε-Insensitive Hebbian Learning (Fyfe and MacDonald, 2001) and derive lateral connections from a probability density function. We use these lateral connections to move outputs towards the mode of the pdf and use the resulting outputs to train the feedforward connections. We show that the resulting network is able to identify a single orientation of bars from a mixture of horizontal and vertical bars.

Referencias bibliográficas

  • Fyfe C., Neuro Comput.
  • 10.1142/S0129065789000475
  • 10.1088/0954-898X_7_2_006
  • 10.1088/0954-898X_9_2_002
  • 10.1016/S0893-6080(05)80107-8
  • Bishop C. M., (1995), Neural Networks for Pattern Recognition
  • 10.1016/0893-6080(94)90060-4
  • Seung H. S., Adv. Neural Inf. Process. Syst., 10
  • Bertsekas D. P., (1995), Nonlinear Programming
  • 10.1023/A:1009606706736