Modelling aboveground net primary production (ANPP) of an Atlantic mountain grassland based on time series approach

  1. A. Salaberria 1
  2. G. García-Baquero 1
  3. I. Odriozola 1
  4. A. Aldezabal 1
  1. 1 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

Zeitschrift:
Cuadernos de investigación geográfica: Geographical Research Letters
  1. Lasanta Martínez, Teodoro (ed. lit.)

ISSN: 0211-6820 1697-9540

Datum der Publikation: 2019

Ausgabe: 45

Nummer: 2

Seiten: 551-569

Art: Artikel

DOI: 10.18172/CIG.3561 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Andere Publikationen in: Cuadernos de investigación geográfica: Geographical Research Letters

Ziele für nachhaltige Entwicklung

Zusammenfassung

Debido a que la producción primaria está relacionada tanto con la energía que sustenta las redes tróficas como con la diversidad de especies, generalmente se considera una propiedad clave del ecosistema y un indicador fiable del forraje disponible. En este trabajo se modeló la producción primaria neta aérea (ANPP) de un sistema de pastizales atlánticos de montaña con el fin de intentar pronosticarla a corto plazo. Como el pastoreo influye en la productividad, se aplicaron experimentalmente dos niveles de tratamiento (pastoreo y exclusión) en cada uno de los tres sitios de estudio. Los datos mensuales de ANPP se recolectaron a lo largo de tres períodos vegetativos consecutivos (2006-2008), obteniendo así seis series temporales (una por parcela). Dado que no se encontraron diferencias significativas entre los sitios (dentro de los tratamientos), estas seis series fueron promediadas y reducidas a dos (una por nivel de tratamiento). Posteriormente, se utilizaron dos tipos de modelos estadísticos para pronosticar la ANPP mensual: métodos de suavizado exponencial y modelos ARIMA. Ambas metodologías arrojaron pronósticos inadecuados debido a la presencia de características locales marcadas (valores atípicos innovadores) en nuestros datos de series temporales relativamente cortas. No obstante, se reveló información útil para un diseño de manejo del pastoreo más adecuado (por ejemplo, la presencia de variación dentro de un año en la ANPP y diferencias entre los tratamientos de pastoreo y exclusión). Es probable que se necesiten series de datos más largas, lo que requeriría un esfuerzo más exigente en la inversión de muestreo, para obtener predicciones adecuadas utilizando estas metodologías de series temporales.

Informationen zur Finanzierung

This study received financial support from ETORTEK10/34 (Basque Government), UNESCO07/07 (University of the Basque Country) and AGL2013-48361-C2-1-R (Ministry of Economy and Competitiveness of the Spanish Government).

Geldgeber

Bibliographische Referenzen

  • Aalto, J., Roux, P.C., Luoto, M. 2013. Vegetation mediates soil temperature and moisture in Arctic-Alpine environments. Arctic, Antarctic, and Alpine Research 45 (4), 429-439. https://doi.org/10.1657/1938-4246-45.4.429.
  • Adler, P.B., Seabloom, E.W., Borer, E.T., Hillebrand, H., Hautier, Y., Hector, A., Harpole, W.S., O'Halloran, L.R., Grace, J.B., Anderson, T.M. 2011. Productivity is a poor predictor of plant species richness. Science 333, 1750-1753. https://doi.org/10.1126/science.1204498.
  • Aldezabal, A., Moragues, L., Odriozola, I., Mijangos, I. 2015. Impact of grazing abandonment on plant and soil microbial communities in an Atlantic mountain grassland. Applied Soil Ecology 96, 251-260. https://doi.org/10.1016/j.apsoil.2015.08.013.
  • Altesor, A., Oesterheld, M., Leoni, E., Lezama, F., Rodríguez, C. 2005. Effect of grazing on community structure and productivity of a Uruguayan grassland. Plant Ecology 179 (1), 83-91. https://doi.org/10.1007/s11258-004-5800-5.
  • BOPV, 2016. Decreto 84/2016, de 31 de mayo, por el que se designa Aralar (ES2120011) Zona Especial de Conservación. Boletín oficial del País Vasco (Spain) No. 174, 13/09/2016.
  • Box, G. E. P., Jenkins, G. M., Reinsel, G. C. 2008. Time series analysis: forecasting and control. John Wiley & Sons, New Yersey (USA), 746 pp.
  • Byrne, K.M., Lauenroth, W.K., Adler, P.B., Byrne, C.M. 2011. Estimating aboveground net primary production in grasslands: a comparison of nondestructive methods. Rangeland Ecology and Management 64, 498-505. https://doi.org/10.2111/rem-d-10-00145.1.
  • Chan, K., Ripley, B. 2012. TSA: Time Series Analysis. R package version 1.01.
  • Chapin III, F.S, Matson, P.A., Vitousek, P.M. 2011. Principles of terrestrial ecosystem ecology. Second Edition. Springer, New York (USA), pp.392.
  • Coghlan, A. 2014. A little book of R for Time Series. Wellcome Trust Sanger Institute, Cambridge (UK), 71 pp.
  • Craine, J.M., Nippert, J.B., Elmore, A.J., Skibbe, A.M., Hutchinson, S.L., Brunsell, N.A. 2012. Timing of climate variability and grassland productivity. Proceedings of the National Academy of Science 109 (9), 3401-3405. https://doi.org/10.1073/pnas.1118438109.
  • Cryer, J., Chan, K.S. 2008. Time series analysis with applications in R. Second Edition. Springer, New York (USA), 491 pp.
  • De Angelis, D.L. 1980. Energy flow, nutrient cycling and ecosystem resilience. Ecology 61 (4), 764-771. https://doi.org/10.2307/1936746.
  • Díaz, S., Lavorel, S., McIntyre, S., Falczuk, V., Casanoves, F., Milchunas, D.G., Skarpe, C., Rusch, G., Sternberg, M., Noy-Meir, I. 2007. Plant trait responses to grazing – A global synthesis. Global Change Biology 13 (2), 313-341. https://doi.org/10.1111/j.1365-2486.2006.01288.x.
  • Duffy, J.E., Godwin, C.M., Cardinale, B.J. 2017. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261-264. http://doi.org/10.1038/nature23886.
  • EC 2013. Council Directive 2013/17/EU of 13 May 2013 adapting certain directives in the field of environment by reason of the accession of the Republic of Croatia. Official Journal of the European Union 158, 193-229.
  • Fabricante, I., Oesterheld, M., Paruelo, J.M. 2009. Annual and seasonal variation of NDVI explained by current and previous precipitation across Northern Patagonia. Journal of Arid Environment 73 (8), 745-753. https://doi.org/10.1016/j.jaridenv.2009.02.006.
  • Fay, P.A., Prober, S.M., Harpole, W.S., Knops, J.M.H., Bakker, J.D., Borer, E.T., Lind, E.M., MacDougall, A.S., Seabloom, E.W., Wragg, P.D. 2015. Grassland productivity limited by multiple nutrients. Nature Plants 1, 1-5. https://doi.org/10.1038/nplants.2015.80.
  • Fox, J.W. 2013. The intermediate disturbance hypothesis should be abandoned. Trends in Ecology and Evolution 28 (2), 86-92. https://doi.org/10.1016/j.tree.2012.08.014.
  • Frank, D.A., McNaughton, S.J. 1993. Evidence for the promotion of aboveground grassland production by native large herbivores in Yellowstone National Park. Oecologia 96 (2), 157-161. https://doi.org/10.1007/bf00317727.
  • Frank, D.A., Kuns, M.M., Guido, D.R. 2002. Consumer control of grassland plant production. Ecology 83 (3), 602-606. https://doi.org/10.2307/3071865
  • Gartzia, M., Alados, C. L., Pérez-Cabello, F. 2014. Assessment of the effects of biophysical and anthropogenic factors on woody plant encroachment in dense and sparse mountain grasslands based on remote sensing data. Progress in Physical Geography 38 (2), 201-217. https://doi.org/10.1177/0309133314524429.
  • Gass, T.M., Binkley, D. 2011. Soil nutrient losses in an altered ecosystem are associated with native ungulate grazing. Journal of Applied Ecology 48 (4), 952-960. https://doi.org/10.1111/j.1365-2664.2011.01996.x.
  • Gibbons, W., Moreno, T. 2002. The geology of Spain. Geological Society of London, London (UK), 649 pp.
  • Golluscio, R.A., Bottaro, H.S., Oesterheld, M. 2015. Controls of Carrying Capacity: Degradation, Primary Production, and Forage Quality Effects in a Patagonian Steppe. Rangeland Ecology and Management 68 (3), 266-275. https://doi.org/10.1016/j.rama.2015.03.002.
  • Holt, C.C. 2004. Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting 20 (1), 5-10. https://doi.org/10.1016/j.ijforecast.2003.09.015.
  • Hu, Z., Fan, J., Zhong, H., Yu, G. 2007. Spatiotemporal dynamics of aboveground primary productivity along a precipitation gradient in Chinese temperate grassland. Science in China Series D-Earth Sciences 50 (5), 754-764. https://doi.org/10.1007/s11430-007-0010-3.
  • Hyndman, R. 2017. forecast: Forecasting functions for time series and linear models. R package version 8.
  • Hyndman, R., Khandakar, Y. 2008. Automatic time series forecasting: The forecast package for R. Journal of Statistical Software 27 (3), 1–22. https://doi.org/10.18637/jss.v027.i03.
  • Hyndman, R., Athanasopoulos, G. 2012. Forecasting : principles and practice. Otexts, 291 pp.
  • La Pierre, K.J., Yuan, S., Chang, C.C., Avolio, M.L., Hallett, L.M., Schreck, T., Smith, M.D. 2011. Explaining temporal variation in above-ground productivity in a mesic grassland: The role of climate and flowering. Journal of Ecology 99 (5), 1250-1262. https://doi.org/10.1111/j.1365-2745.2011.01844.x.
  • La Pierre, K. J., Blumenthal, D. M., Brown, C. S., Klein, J. A., Smith, M. D. 2016. Drivers of variation in aboveground net primary productivity and plant community composition differ across a broad precipitation gradient. Ecosystems 19 (3), 521-533. https://doi.org/10.1007/s10021-015-9949-7.
  • Lasanta-Martínez, T., Vicente-Serrano, S.M., Cuadrat-Prats, J.M. 2005. Mountain mediterranean landscape evolution caused by the abandonment of traditional primary activities: A study of the Spanish Central Pyrenees. Applied Geography 25 (1), 47-65. https://doi.org/10.1016/j.apgeog.2004.11.001.
  • LeBauer, D.S., Treseder, K.K. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89 (2), 371-379. https://doi.org/10.1890/06-2057.1.
  • Loidi, J. 1983. Datos sobre la vegetación de Guipúzcoa (País Vasco). Lazaroa 4, 63-90.
  • McNaughton, S.J. 1985. Ecology of a grazing ecosystem: the Serengeti. Ecological Monographs 55 (3), 259-294. https://doi.org/10.2307/1942578.
  • McNaughton, S.J., Oesterheld, M., Frank, D.A., Williams, K.J. 1989. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341, 143-144. https://doi.org/10.1038/341142a0.
  • McNaughton, S.J., Banyikwa, F.F., McNaughton, M.M. 1997. Promotion of the cycling of diet-enhancing nutrients by african grazers. Science 278, 1798-1800. https://doi.org/10.1126/science.278.5344.1798.
  • Mittelbach, G.G., Steiner, C.F., Scheiner, S.M., Gross, K.L., Reynolds, H.L., Waide, R.B., Willig, M.R., Dodson, S.I., Gough, L. 2001. What is the observed relationship between species richness and productivity? Ecology 82 (9), 2381-2396. https://doi.org/10.1890/0012-9658(2001)082[2381:WITORB]2.0.CO;2.
  • Odriozola, I., García-Baquero, G., Laskurain, N.A., Aldezabal, A. 2014. Livestock grazing modifies the effect of environmental factors on soil temperature and water content in a temperate grassland. Geoderma 235-236, 347-354. https://doi.org/10.1016/j.geoderma.2014.08.002.
  • Odriozola, I., García-Baquero, G., Fortin, M.J., Laskurain, N.A., Aldezabal, A. 2017. Grazing exclusion unleashes competitive plant responses in Iberian Atlantic mountain grasslands. Applied Vegetation Science 20 (1), 50-61. https://doi.org/10.1111/avsc.12277.
  • Patton, B.D., Dong, X., Nyren, P.E., Nyren, A. 2007. Effects of grazing intensity, precipitation, and temperature on forage production. Rangeland Ecology and Management 60 (6), 656-665. https://doi.org/10.2111/07-008R2.1.
  • Pe'er, G., Dicks, L.V., Visconti, P., Arlettaz, R., Baldi, A., Benton, T.G., Collins, S., Dieterich, M., Gregory, R.D., Hartig, F. 2014. EU agricultural reform fails on biodiversity. Science 344 (6188), 1090-1092. https://doi.org/10.1126/science.1253425.
  • Peco, B., Navarro, E., Carmona, C.P., Medina, N.G., Marques, M.J. 2017. Effects of grazing abandonment on soil multifunctionality: The role of plant functional traits. Agriculture, Ecosystems and Environment 249, 215-225. https://doi.org/10.1016/j.agee.2017.08.013.
  • Primi, R., Filibeck, G., Amici, A., Bückle, C., Cancellieri, L., Di Filipo, A., Gentile, C., Guglielmino, A., Latini, R., Mancini, L.D. 2016. From Landsat to leafhoppers: A multidisciplinary approach for sustainable stocking assessment and ecological monitoring in mountain grasslands. Agriculture, Ecosystems and Environment 234, 118-133. https://doi.org/10.1016/j.agee.2016.04.028.
  • R core team 2015. A lenguage and environment for statistical computing: R version 3.2.2. R Foundation for Statistical Computing, Vienna, Austria.
  • Redjadj, C., Duparc, A., Lavorel, S., Grigulis, K., Bonenfant, C., Maillard, D., Said, S., Loison, A. 2012. Estimating herbaceous plant biomass in mountain grasslands: A comparative study using three different methods. Alpine Botany 122 (1), 57-63. https://doi.org/10.1007/s00035-012-0100-5.
  • Rounsevell, M.D.A., Reginster, I., Araújo, M.B., Carter, T.R., Dendoncker, N., Ewert, F., House, J.I., Kankaanpää, S., Leemans, R., Metzger, M.J. 2006. A coherent set of future land use change scenarios for Europe. Agriculture, Ecosystems and Environment 114 (1), 57-68. https://doi.org/10.1016/j.agee.2005.11.027.
  • Schrama, M., Veen, G.F.C., Bakker, E.S.L., Ruifrok, J.L., Bakker, J.P., Olff, H. 2013. An integrated perspective to explain nitrogen mineralization in grazed ecosystems. Perspectives in Plant Ecology, Evolution and Systematic 15 (1), 32-44. https://doi.org/10.1016/j.ppees.2012.12.001.
  • Semmartin, M., Aguiar, M.R., Distel, R.A., Moretto, A.S., Ghersa, C.M. 2004. Litter quality and nutrient cycling affected by grazing-induced species replacements along a precipitation gradient. Oikos 107, 148-160. https://doi.org/10.1111/j.0030-1299.2004.13153.x.
  • Singh, J.S., Lauenroth, W.K., Steinhorst, R.K. 1975. Review and assessment of various techniques for estimating net aerial primary production in grasslands from harvest data. Botanical Review 41 (2), 181-232. https://doi.org/10.1007/BF02860829.
  • Swemmer, A.M., Knapp, A.K., Snyman, H.A. 2007. Intra-seasonal precipitation patterns and above-ground productivity in three perennial grasslands. Journal of Ecology 95(4), 780-788. https://doi.org/10.1111/j.1365-2745.2007.01237.x.
  • Tang, Z., Deng, L., An, H., Yan, W., Shangguan, Z. 2017. The effect of nitrogen addition on community structure and productivity in grasslands: A meta-analysis. Ecological Engineering 99, 31-38. https://doi.org/10.1016/j.ecoleng.2016.11.039.
  • Wang, S., Duan, J., Xu, G., Wang, Y., Zhang, Z., Rui, Y., Luo, C., Xu, B., Zhu, X., Chang, X. 2012. Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology 93 (11), 2365-2376. https://doi.org/10.1890/11-1408.1.
  • Winters, P.R. 1960. Forecasting sales by exponentially weighted moving averages. Management Science 6 (3), 324-342. https://doi.org/10.1287/mnsc.6.3.324.
  • Wright, D.H. 1983. Species-energy theory : an extension of species-area theory. Oikos 41 (3), 496-506. https://doi.org/10.2307/3544109.
  • Zhang, J., Huang, Y., Chen, H., Gong, J., Qi, Y., Yang, F., Li, E. 2016. Effects of grassland management on the community structure, aboveground biomass and stability of a temperate steppe in Inner Mongolia, China. Journal of Arid Land 8 (3), 422-433. https://doi.org/10.1007/s40333-016-0002-2.