Multifunctional green supramolecular solvents for cost-effective production of highly stable astaxanthin-rich formulations from Haematococcus pluvialis

  1. Salatti-Dorado, José Angel 1
  2. García-Gómez, Diego 2
  3. Rodriguez-Ruiz, Violeta 3
  4. Gueguen, Virginie 4
  5. Pavon-Djavid, Graciela 4
  6. Rubio, Soledad 1
  1. 1 Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUIQFN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (anexo), E-14071 Córdoba, Spain.
  2. 2 Department of Analytical Chemistry, Nutrition and Food Science, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain
  3. 3 ERRMECe Laboratory, Biomaterials for Health Group, University of Cergy Pontoise, Maison Internationale de la Recherche, I MAT, 1 rue Descartes, 95031 Neuville sur Oise, France.
  4. 4 INSERM U1148, Laboratoire de Recherche Vasculaire Translationnelle, Université Paris 13, Sorbonne Paris Cité 99, Ave Jean-Baptiste Clément, 93 430 Villetaneuse, France.
Journal:
Food Chemistry

ISSN: 0308-8146

Year of publication: 2019

Volume: 279

Pages: 294-302

Type: Article

DOI: 10.1016/J.FOODCHEM.2018.11.132 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Food Chemistry

Sustainable development goals

Abstract

The interest of food industry to merchandise natural astaxanthin is growing up. However, it confronts scientific and technological challenges mainly related to its poor water solubility and chemical instability. Here, we present a new quick and efficient green process to simultaneously extract, encapsulate and stabilize astaxanthin from Haematococcus pluvialis. The process is based on the hitherto unexplored combination of supramolecular solvents (SUPRAS), nanostructured liquids generated from amphiphiles through sequential self-assembly and coacervation, and nanostructured lipid carriers (NLCs). These novel nanosystems were characterized by means of dynamic light scattering, AFM and cryoSEM, revealing spherical particles of ∼100 nm. Their antioxidant activity was measured by ORAC (20.6 ± 3.9 μM TE) and α-TEAC (2.92 ± 0.58 µM α-TE) assays and their in vitro capacity to inhibit ROS by DHE probe. Results showed that the SUPRAS-NLCs proposed yield high extraction and encapsulation efficiencies (71 ± 4%) in combination with a remarkable time stability (180 d, 4 °C).

Bibliographic References

  • Apak, (2013), Pure Applied Chemistry, 85, pp. 957, 10.1351/PAC-REP-12-07-15
  • Ballesteros-Gómez, (2010), Analytica Chimica Acta, 677, pp. 108, 10.1016/j.aca.2010.07.027
  • Ballesteros-Gómez, (2012), Analytical Chemistry, 84, pp. 342, 10.1021/ac2026207
  • Caballero-Casero, (2015), Analytica Chimica Acta, 890, pp. 124, 10.1016/j.aca.2015.06.060
  • Caballo, (2017), pp. 111
  • Cao, (1993), Free Radical Biology & Medicine, 14, pp. 303, 10.1016/0891-5849(93)90027-R
  • Commission Regulation (UE), No 1130/2011, (2011), Official Journal of the European Union, L295, pp. 178
  • Dikalov, (2012), Antioxidants & Redox Signaling, 20, 10.1089/ars.2012.4886
  • Scientific Opinion on the safety of astaxanthin‐rich ingredients (AstaREAL A1010 and AstaREAL L10) as novel food ingredients. EFSA Journal, 12(7), 3757. https://doi.org/10.2903/j.efsa.2014.3757.
  • Fassett, (2011), Marine Drugs, 9, pp. 447, 10.3390/md9030447
  • Fathi, (2013), Journal of Functional Foods, 5, pp. 1382, 10.1016/j.jff.2013.05.006
  • Focsan, (2014), The Journal of Physical Chemistry B, 118, pp. 2331, 10.1021/jp4121436
  • Gong, (2016), Biotechnology Advances, 34, pp. 1396, 10.1016/j.biotechadv.2016.10.005
  • Hossain, (2017), Foods, 6, pp. 57, 10.3390/foods6080057
  • Jaime, (2010), LWT – Food Science and Technology, 43, pp. 105, 10.1016/j.lwt.2009.06.023
  • Janiszewska-Turak, (2017), Food Research International, 99, pp. 891, 10.1016/j.foodres.2017.02.001
  • Landrum, (2010)
  • Li, (2016), International Journal of Pharmaceutics, 511, pp. 524, 10.1016/j.ijpharm.2016.07.049
  • Machmudah, (2006), Industrial & Engineering Chemistry Research, 45, pp. 3652, 10.1021/ie051357k
  • Martínez-Delgado, (2017), Food Chemistry, 225, pp. 23, 10.1016/j.foodchem.2016.11.092
  • Molino, (2018), Journal of Biotechnology, 283, pp. 51, 10.1016/j.jbiotec.2018.07.010
  • Müller, (2011), Food Chemistry, 129, pp. 139, 10.1016/j.foodchem.2011.04.045
  • Priyadarshani, (2017), Critical Reviews in Food Science and Nutrition, 57, pp. 1710, 10.1080/10408398.2015.1023431
  • Regnier, (2015), Marine Drugs, 13, pp. 2857, 10.3390/md13052857
  • Reyes, (2014), The Journal of Supercritical Fluids, 92, pp. 75, 10.1016/j.supflu.2014.05.013
  • Rubio, S., Sicilia, D., Caballo, C., Caballero Casero, N., Pavon-Djavid, G., Gueguen, V., & Bastias, J.E. (2017, June 21). Patent P201730822. Spain.
  • Ruiz, (2007), Analytical Chemistry, 79, pp. 7473, 10.1021/ac0708644
  • Saini, (2018), Food Chemistry, 240, pp. 90, 10.1016/j.foodchem.2017.07.099
  • Saupe, (2006), International Journal of Pharmaceutics, 314, pp. 56, 10.1016/j.ijpharm.2006.01.022
  • Souto, (2004), European Journal of Pharmaceutics and Biopharmaceutics, 58, pp. 83, 10.1016/j.ejpb.2004.02.015
  • Tamjidi, (2013), Innovative Food Science and Emerging Technologies, 19, pp. 29, 10.1016/j.ifset.2013.03.002
  • Tamjidi, (2014), European Journal of Lipid Science and Technology, 116, pp. 968, 10.1002/ejlt.201300509
  • Tamjidi, (2017), Journal of Food Science and Technology, 54, pp. 3132, 10.1007/s13197-017-2749-7
  • Tamjidi, (2018), Journal of the Science of Food and Agriculture, 98, pp. 511, 10.1002/jsfa.8488
  • Yin, (2011), Chemical Reviews, 111, pp. 5944, 10.1021/cr200084z
  • Yuan, (2012), Carbohydrate Polymers, 89, pp. 492, 10.1016/j.carbpol.2012.03.033
  • Zhang, (2017), Canadian Journal of Chemical Engineering, 95, pp. 412, 10.1002/cjce.22712
  • Zhao, (2016), Food and Bioproducts Processing, 99, pp. 197, 10.1016/j.fbp.2016.05.007
  • Zhou, (2018), Food Chemistry, 260, pp. 73, 10.1016/j.foodchem.2018.03.046
  • Zuluaga, (2017), Oxidative Medicine and Cellular Longevity, 2017, pp. 8073798, 10.1155/2017/8073798