Marginal contribution of game statistics to probability of playing playoff at elite basketball leagues

  1. Izquierdo, José María 1
  2. Pedauga, Luis Enrique 1
  3. Pardo, Ana 1
  4. Redondo, Juan Carlos 1
  1. 1 Universidad de León
    info

    Universidad de León

    León, España

    ROR https://ror.org/02tzt0b78

Revista:
Cultura, ciencia y deporte

ISSN: 1696-5043

Año de publicación: 2021

Volumen: 16

Número: 49

Páginas: 433-442

Tipo: Artículo

DOI: 10.12800/CCD.V16I49.1586 DIALNET GOOGLE SCHOLAR lock_openBULERIA editor

Otras publicaciones en: Cultura, ciencia y deporte

Objetivos de desarrollo sostenible

Resumen

The multilevel ordinal logistic mixed-effects method applied is proposed as a support tool to management in basketball teams helping to identify the game-related statistics that discriminate the final ranking in a regular season classification. A sample of 10684 games that cover 10 seasons and reach sample of 752 cases were evaluated from the two main Spanish basketball leagues (male and female). The multilevel analysis applied identifies the marginal effects of the main variables regularly evaluated by coaches and managers in basketball leagues, which may help them improve the performance of their teams. The results revealed that in Relegation zone the marginal contribution of field shots, defensive rebound, steals and turnovers percentage are 8.3 percentage points (pp), 7 pp, 9.6 pp and 8.6 pp respectively, higher than in Play-off zone (p<0.01). The model applied in this study make a significant contribution to the literature by identifying a methodology that can be straightforwardly extended for an assessment at the ranking of teams helping coaches in making important decisions such as hierarchically discriminating which factors are the most relevant in their league, both to avoid the relegation zone and to access the promotion zone.

Referencias bibliográficas

  • Bradbury, J. C. (2019). Determinants of revenue in sports leagues: An empirical assessment. Economic Inquiry, 57(1), 121-140. doi:10.1111/ecin.12710
  • Fernández García, Á. I., Blanca-Torres, J. C., Hernández-García, R., & Torres-Luque, G. (2019). Análisis de las variables estadísticas relacionadas con el servicio en tenis masculino de alto rendimiento en categoría junior y absoluto. Cultura, Ciencia y Deporte, 14(42), 289-295. doi:10.12800/ccd.v14i42.1342
  • García, J., Ibáñez, S. J., & Feu, S. (2010). Game statistics that discriminate the national teams partipating in the 2006 World Basketball Championship, regarding the level and the gender of the teams. Kronos, 9(17), 57-63.
  • García-Manso, J. M., Arriaza, A., Martínez-González, J. M., Ramos-Verde, E., Díaz-Díaz, R., & García-Roca, J. A. (2020). What makes Elite Leagues Profesional? Cultura, Ciencia y Deporte, 15(45), 303-311. doi:10.12800/ccd.v15i45.1508
  • Gelman, A., & Pardoe, I. (2007). Average predictive comparisons for models with nonlinearity, interactions, and variance components. Sociological Methodology, 37(1), 23-51. doi:10.1111/j.1467-9531.2007.00181.x
  • Glasgow, P., & Mutch, S. (2019). Twists, Turns & Entanglement – Complexity and the tricky challenges of sport for the athlete and practitioner. British Journal of Sports Medicine, 53(19), 1197-1197. doi:10.1136/bjsports-2019-101518
  • Goldstein, H. (2003). Multilevel modelling of educational data Methodology and epistemology of multilevel analysis (pp. 25-42): Springer.
  • Gutiérrez, Ó., & Ruiz, J. L. (2013). Data envelopment analysis and cross-efficiency evaluation in the management of sports teams: the assessment of game performance of players in the Spanish handball league. Journal of Sport Management, 27(3), 217-229. doi:10.1123/jsm.27.3.217
  • Gómez, M., Lorenzo, A., Ortega, E., Sampaio, J., & Ibáñez, S. (2009). Game related statistics discriminating between starters and nonstarters players in Women’s National Basketball Association League (WNBA). Journal of Sports Science and Medicine, 8(2), 278.
  • Gómez, M., Lorenzo, A., Sampaio, J., Ibáñez, S., & Ortega, E. (2008). Game-related statistics that discriminated winning and losing teams from the Spanish men’s professional basketball teams. Collegium Antropologicum, 32(2), 451-456.
  • Gómez, M. A., Lorenzo, A., Ortega, E., & Olmedilla, A. (2007). Differences in the performance indicators of winning and losing women’s basketball teams during home/away games. Revista de psicología del deporte, 16(1), 41-54.
  • Gómez, M. A., Lorenzo, A., Sampaio, J., & Ibáñez, S. J. (2006). Differences in game-related statistics between winning and losing teams in women´s basketball. Journal of Human Movement Studies, 51, 357-369.
  • Harrell, F. (2001). Regression Modeling Strategies, with Applications to Linear Models, Survival Analysis and Logistic Regression: New York, NY, Springer.
  • Hedeker, D., & Gibbons, R. D. (1994). A random-effects ordinal regression model for multilevel analysis. Biometrics, 50(4), 933-944. doi:10.2307/2533433
  • Ibáñez, S., Sampaio, J., Feu, S., Lorenzo, A., Gómez, M., & Ortega, E. (2008). Basketball game-related statistics that discriminate between teams’ season-long success. European Journal of Sport Sciences, 8(6), 369-372. doi:10.1080/17461390802261470
  • Ibáñez, S., Sampaio, J., Sáenz-López, P., Giménez, J., & Janeira, M. (2003). Game statistics discriminating the final outcome of junior world basketball championship matches (Portugal 1999). Journal of Human Movement Studies, 45(1), 1-20.
  • Ibáñez, S. J., García, J., Feu, S., Lorenzo, A., & Sampaio, J. (2009). Effects of consecutive basketball games on the game-related statistics that discriminate winner and losing teams. Journal of Sports Science and Medicine, 8(3), 458–462.
  • Lampert Ribas, R., Navarro, R., Tavares, F., & Gómez, M. (2011). Analysis of number of players involved in rebound situations in Euroleague basketball games. Open Sports Sci J, 4(1). doi:10.2174/1875399x01104010010
  • Lewis, M. (2004). Moneyball: The art of winning an unfair game. WW Norton & Company.
  • Luke, D. (2004). Multilevel modeling: Thousand Oaks, CA Sage.
  • Madarame, H. (2017). Game-Related Statistics Which Discriminate Between Winning and Losing Teams in Asian and European Men’s Basketball Championships. Asian Journal of Sports Medicine, 8(2), e42727. doi:10.5812/asjsm.42727
  • Navarro, R. M., Lorenzo, A., Gómez, M. Á., & Sampaio, J. (2009). Analysis of critical moments in the league ACB 2007-08. Revista de Psicología del Deporte, 18(3), 391-395.
  • Ofoghi, B., Zeleznikow, J., MacMahon, C., & Raab, M. (2013). Data Mining in Elite Sports: A Review and a Framework. Measurement in Physical Education and Exercise Science, 17(3), 171-186. doi:10.1080/1091367x.2013.805137
  • Oliver, D. (2004). Basketball on paper: Rules and tools for performance analysis. Dulles, VA: Brassey’s: Inc.
  • Onwuegbuzie, A. (2000). Factors Associated with Success Among NBA Teams. The Sport Journal, 3(2).
  • Paulauskas, R., Masiulis, N., Vaquera, A., Figueira, B., & Sampaio, J. (2018). Basketball game-related statistics that discriminate between European players competing in the NBA and in the Euroleague. Journal of Human Kinetics, 65, 225–233. doi:10.2478/hukin-2018-0030
  • Pojskić, H., Šeparović, V., & Užičanin, E. (2009). Differences between successful and unsuccessful basketball teams on the final Olympic tournament. Acta Kinesiologica, 3(2), 110-114.
  • Puente, C., Del Coso, J., Salinero, J., & Abián-Vicén, J. (2015). Basketball performance indicators during the ACB regular season from 2003 to 2013. International Journal of Performance and Analysis in Sport, 15(3). doi:10.1080/24748668.2015.11868842
  • Rimler, M., Song, S., & David, T. (2010). Estimating production efficiency in men’s NCAA college basketball: A bayesian approach. Journal of Sports Economics, 11(3), 287-315. doi:10.1177/1527002509337803
  • Salmerón-Gómez, R., & Gómez-Haro, S. (2016). Expanding horizons on performance measurement and regularity in professional basketball. RICYDE-Revista internacional de ciencias del deporte, 12(45), 234-249.
  • Sampaio, J., Godoy, S. I., & Feu, S. (2004). Discriminative power of basketball game-related statistics by level of competition and sex. Percept Mot Skills, 99(3), 1231-1238. doi:10.2466/pms.99.7.1231-1238
  • Sampaio, J., & Janeira, M. (2003). Statistical analyses of basketball team performance: understanding team’s wins and losses according to a different index of ball possessions. International Journal of Performance and Analysis in Sport, 3(1), 40-49. doi:10.1080/24748668.2003.11868273
  • Srholec, M. (2010). A multilevel approach to geography of innovation. Regional studies, 44(9), 1207-1220. doi:10.1080/00343400903365094
  • Sáenz-López, P., Rebollo, J. A., & Vizcaíno, C. (2017). Keys to the victory in the basketball Queen’s Cup in 2016. Cuadernos de Psicología del Deporte, 17(3), 223-230.
  • Teramoto, M., & Cross, C. L. (2010). Relative importance of performance factors in winning NBA games in regular season versus playoffs. Journal of Quantitative Analysis in Sports, 6(3). doi:10.2202/1559-0410.1260
  • Trninić, M., Trninić, S., & Papić, V. (2009). Development management model of elite athletes in team sports games. Collegium Antropologicum, 33(2), 363-372. doi: https://hrcak.srce.hr/40506
  • Utku, M. (2016). Marginal contribution of game statistics to probability of winning at different levels of competition in basketball: Evidence from the Euroleague. International Journal of Sport Science Coaching, 11(1), 98-107. doi:10.1177/1747954115624828
  • Vila-Maldonado, S., Sáez-Gallego, N., García-López, l., & Contreras, O. (2019). Influencia del comportamiento visual en las decisiones en el bloqueo de voleibol. Revista internacional de medicina y ciencias de la actividad física y del deporte, 19(75), 489 - 504. https://doi.org/10.15366/rimcafd2019.75.007
  • İlkay, I., Işik, O., & Ersöz , Y. (2016). Examining the turkish men’s professional basketball team’s success according to game-related statistics with discriminant analysis. International Journal of Performance and Analysis in Sport, 16(3). doi:10.1080/24748668.2016.11868931