Manufacturing ordered films of nanoparticles by Langmuir–Blodgett technique
- López-Díaz, D. 1
- Sánchez-Hidalgo, R. 1
- Velázquez, M.M. 1
- Martín-García, B. 1
- Alejo, T. 1
- Merchán, M.D. 1
- 1 Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, Salamanca, Spain
Année de publication: 2021
Pages: 121-138
Type: Chapitre d'ouvrage
Résumé
The Langmuir–Blodgett (LB) technique is a very convenient tool to build thin films, with sizes that vary from one to a few molecular layers. In general, the technique was applied to amphiphilic molecules that are capable of generating stable Langmuir monolayers at the water/air interface, which can then be transferred to a given solid substrate; however, in recent years, this technique has been expanded to polymers, biomolecules, fullerenes, and nanoparticles. This chapter will attempt to collect the progress in recent years related to the preparation of ordered nanoparticle films using the LB technique. It will aim at different ways of building nanoparticles films that can be used as components of electronic, light emission devices, and chemical or biological sensors.
Références bibliographiques
- Talapin, (2010), Chem. Rev., 110, pp. 389, 10.1021/cr900137k
- Talapin, (2005), Science, 310, pp. 86, 10.1126/science.1116703
- Alivisatos, (1996), Nature, 382, pp. 609, 10.1038/382609a0
- Baker, (2010), Nano Lett., 10, pp. 195, 10.1021/nl903187v
- Gao, (2011), Small, 7, pp. 2133, 10.1002/smll.201100474
- Wallraff, (1999), Chem. Rev., 99, pp. 1801, 10.1021/cr980003i
- Ito, (2000), Nature, 406, pp. 1027, 10.1038/35023233
- Garcia, (2006), Chem. Soc. Rev., 35, pp. 29, 10.1039/B501599P
- Cui, (2004), Sens. Actuators A, 114, pp. 501, 10.1016/j.sna.2004.01.023
- Decher, (1997), Science, 277, pp. 1232, 10.1126/science.277.5330.1232
- Zhavnerko, (2010), Mater. Sci. Eng. B, 169, pp. 43, 10.1016/j.mseb.2009.12.005
- Roberts, (1990)
- Alejo, (2013), Mater. Chem. Phys., 138, pp. 286, 10.1016/j.matchemphys.2012.11.058
- Martín-García, (2013), Mater. Chem. Phys., 141, pp. 324, 10.1016/j.matchemphys.2013.05.017
- Martín-García, (2013), J. Phys. Chem. C, 117, pp. 14787, 10.1021/jp311492z
- Alejo, (2013), J. Nanomater., pp. 1, 10.1155/2013/287094
- Alejo, (2014), Langmuir, 30, pp. 9977, 10.1021/la5024955
- Martín-García, (2014), Langmuir, 30, pp. 9977, 10.1021/la404834b
- Martín-García, (2012), ChemPhysChem, 13, pp. 3682, 10.1002/cphc.201200501
- López-Díaz, (2013), ChemPhysChem, 14, pp. 4002, 10.1002/cphc.201300620
- J. Orna, D. López-Díaz, A. Pérez, M.J. Rodríguez, A R. Lagunas, M.M. Velázquez, S. Blanco, C. Merino, GRAnPH®: high quality graphene oxide obtained from GANF® carbon nanofibres, eNanonewsletter, vol. 27, 2013, pp. 33–37.
- Claramunt, (2015), J. Phys. Chem. C, 119, pp. 10123, 10.1021/acs.jpcc.5b01590
- Hidalgo, (2015), Langmuir, 31, pp. 2697, 10.1021/la5029178
- Gaines, (1966)
- Davies, (1963)
- Barnes, (2011)
- Petty, (1996)
- López-Diaz, (2015), Materials, 8, pp. 5405, 10.3390/ma8115405
- Sear, (1999), Phys. Rev. E, 59, pp. R6255, 10.1103/PhysRevE.59.R6255
- Ganesan, (2008), J. Polym. Sci. Part B: Polym. Phys., 46, pp. 2666, 10.1002/polb.21587
- Lv, (2008), Colloids Surf. B, 61, pp. 282, 10.1016/j.colsurfb.2007.09.005
- Torrisi, (2011), Nanoscale Res. Lett., 6, pp. 167, 10.1186/1556-276X-6-167
- Sharma, (2012), Anal. Chem., 84, pp. 3082, 10.1021/ac202265a
- Kim, (2011), Nat. Photon., 5, pp. 176, 10.1038/nphoton.2011.12
- Ji, (2005), Langmuir, 21, pp. 5377, 10.1021/la050327j
- Gupta, (2010), Thin Solid Films, 519, pp. 1072, 10.1016/j.tsf.2010.08.046
- Pohjalainen, (2010), Langmuir, 26, pp. 13937, 10.1021/la101630q
- Gattas-Asfura, (2005), J. Am. Chem. Soc., 127, pp. 14640, 10.1021/ja0514848
- Rogach, (2008)
- Tomczak, (2009), Prog. Polym. Sci., 34, pp. 393, 10.1016/j.progpolymsci.2008.11.004
- Selinsky, (2013), Chem. Soc. Rev., 42, pp. 2963, 10.1039/C2CS35374A
- Lambert, (2010), Langmuir, 26, pp. 7732, 10.1021/la904474h
- Dabbousi, (1994), Chem. Mater., 6, pp. 216, 10.1021/cm00038a020
- López-Díaz, (2008), Eur. Phys. J. E, 26, pp. 417, 10.1140/epje/i2008-10343-2
- Martín-García, (2010), Langmuir, 26, pp. 14556, 10.1021/la101736e
- Alejo, (2011), Thin Solid Films, 519, pp. 5689, 10.1016/j.tsf.2011.03.018
- John Collins, (1997), J. Chem. Soc. Faraday Trans., 93, pp. 4021, 10.1039/a704115b
- Jones, (1987), Polymer, 28, pp. 1619, 10.1016/0032-3861(87)90001-2
- Shtykova, (2008), J. Phys. Chem. C, 112, pp. 16809, 10.1021/jp8053636
- Bronstein, (2010), J. Phys. Chem. C, 114, pp. 21900, 10.1021/jp107283w
- Chen, (2002), Langmuir, 18, pp. 6222, 10.1021/la025600l
- Chen, (2012), Langmuir, 28, pp. 3429, 10.1021/la204089u
- Gentili, (2012), Chem. Soc. Rev., 41, pp. 4430, 10.1039/c2cs35040h
- Reiter, (1992), Phys. Rev. Lett., 68, pp. 75, 10.1103/PhysRevLett.68.75
- Tao, (2008), Acc. Chem. Res., 41, pp. 1662, 10.1021/ar8000525
- Shen, (2006), J. Phys. Chem. B, 110, pp. 9556, 10.1021/jp060416k
- Spigone, (2009), Langmuir, 25, pp. 7457, 10.1021/la900385y
- Kim, (2011), Small, 7, pp. 2526
- Chen, (2013), Nat. Commun., 4, pp. 1333, 10.1038/ncomms2326
- Bawendi, (1992), J. Chem. Phys., 96, pp. 946, 10.1063/1.462114
- Efros, (1996), Phys. Rev. B, 54, pp. 4843, 10.1103/PhysRevB.54.4843
- Donegá, (2011), Chem. Soc. Rev., 40, pp. 1512, 10.1039/C0CS00055H
- Alejo, (2017), J. Lumin., 183, pp. 113, 10.1016/j.jlumin.2016.11.002
- Wang, (2007), Nano Lett., 8, pp. 323, 10.1021/nl072838r
- Wang, (2008), Phys. Rev. Lett., 100, pp. 206803, 10.1103/PhysRevLett.100.206803
- Dimitrakakis, (2008), Nano Lett., 8, pp. 3166, 10.1021/nl801417w
- Geim, (2007), Nat. Mater., 6, pp. 183, 10.1038/nmat1849
- Lee, (2008), Science, 321, pp. 385, 10.1126/science.1157996
- Zhu, (2010), Adv. Mater., 22, pp. 3906, 10.1002/adma.201001068
- Potts, (2011), Polymer, 52, pp. 5, 10.1016/j.polymer.2010.11.042
- Prezioso, (2013), J. Phys. Chem. C., 117, pp. 10683, 10.1021/jp3085759
- Eda, (2010), Adv. Mater., 22, pp. 2392, 10.1002/adma.200903689
- Dreyer, (2010), Chem. Soc. Rev., 39, pp. 228, 10.1039/B917103G
- Varela-Rizo, (2010), Carbon, 48, pp. 3640, 10.1016/j.carbon.2010.05.033
- Varela-Rizo, (2011), J. Mater. Res., 26, pp. 2632, 10.1557/jmr.2011.272
- Hummers, (1958), J. Am. Chem. Soc., 80, 10.1021/ja01539a017
- Thomas, (2013), Chem. Mater., 25, pp. 3580, 10.1021/cm401922e
- Rourke, (2011), Angew. Chem. Int. Ed., 50, pp. 3173, 10.1002/anie.201007520
- Wu, (1995), Carbon, 33, pp. 597, 10.1016/0008-6223(95)00145-4
- Huang, (2011), Small, 7, pp. 1876, 10.1002/smll.201002009
- Wang, (2009), J. Am. Chem. Soc., 131, pp. 4983, 10.1021/ja900191n
- Cote, (2009), J. Am. Chem. Soc., 131, pp. 1043, 10.1021/ja806262m
- Kim, (2010), Adv. Mater., 22, pp. 1954, 10.1002/adma.200903932
- Kim, (2012), Acc. Chem. Res., 45, pp. 1356, 10.1021/ar300047s
- Zheng, (2014), Prog. Mater. Sci., 64, pp. 200, 10.1016/j.pmatsci.2014.03.004
- Cote, (2010), Soft Matter, 6, pp. 6096, 10.1039/c0sm00667j
- Zheng, (2011), ACS Nano, 5, pp. 6039, 10.1021/nn2018683
- Zheng, (2012), J. Mater. Chem., 22, pp. 25072, 10.1039/c2jm34870e
- Lin, (2013), J. Mater. Chem. C, 1, pp. 6869, 10.1039/c3tc31497a
- López-Díaz, (2017), J. Phys. Chem. C, 121, pp. 20489, 10.1021/acs.jpcc.7b06236
- Larciprete, (2011), J. Am. Chem. Soc., 133, pp. 17315, 10.1021/ja205168x
- Luo, (2010), J. Am. Chem. Soc., 132, pp. 17667, 10.1021/ja1078943
- Imperiali, (2012), Langmuir, 28, pp. 7990, 10.1021/la300597n
- Fainerman, (2006), Langmuir, 22, pp. 1701, 10.1021/la052407t