Procesamiento de magnitudes numéricas y ejecución matemática
- Josetxu Orrantia 1
- Sara San Romualdo 1
- Sánchez, R. 1
- Laura Mantilla 1
- David Muñez 2
- Lieven Verschaffel 3
-
1
Universidad de Salamanca
info
- 2 National Institute of Education. Center for Research in Child Development (Singapur)
-
3
KU Leuven
info
ISSN: 0034-8082
Datum der Publikation: 2018
Nummer: 381
Seiten: 133-146
Art: Artikel
Andere Publikationen in: Revista de educación
Zusammenfassung
Recientes investigaciones sugieren que las diferencias individuales en ejecución matemática están relacionadas con las habilidades de procesamiento numérico básico, tales como la capacidad para procesar magnitudes numéricas. Una cuestión clave en este reciente campo de investigación es qué habilidades relacionadas con el procesamiento de magnitudes predicen la ejecución en matemáticas, el procesamiento de magnitudes no simbólicas o el acceso a esas magnitudes desde los números simbólicos. En este estudio extendemos esta investigación analizando el rol del tamaño de las magnitudes utilizando un diseño predictivo longitudinal. Cincuenta y dos participantes de 1º de Educación Primaria fueron evaluados en tareas de procesamiento de magnitudes numéricas, tanto simbólicas como no simbólicas con cantidades grandes y pequeñas, y dos años después se les evaluó en ejecución matemática. Los análisis de regresión jerárquica muestran que el procesamiento de magnitudes simbólicas de cantidades grandes (dos dígitos) es un predictor más robusto de la futura ejecución matemática que las demás medidas de procesamiento de magnitudes. Estos resultados se interpretan en términos de sus implicaciones educativas, específicamente en aspectos relacionados con la identificación temprana de estudiantes en riesgo de presentar dificultades en el aprendizaje de las matemáticas, algo prioritario en cualquier sistema educativo desde el punto de vista de la prevención.
Informationen zur Finanzierung
Este trabajo fue realizado como parte del proyecto financiado PSI2015-66802-P del Ministerio de Economía y CompetitividadGeldgeber
-
Ministerio de Economía y Competitividad
Spain
- PSI2015-66802-P
Bibliographische Referenzen
- Ashkenazi, S., Mark-Zigdon, N., y Henik, A. (2009). Numerical distance, effect in developmental discalculia. Cognitive Development, 24, 387400.
- Ato, M., & López, J., & Benavente, A. (2013). Un sistema de clasificación de los diseños de investigación en psicología. Anales de Psicología, 29, 1038-1059.
- Barth, H., Starr, A., y Sullivan, J. (2009). Children’s mappings of large number words to numerosities. Cognitive Development, 24, 248-264.
- Bertelletti, I., Lucangeli, D., Piazza, M., Dehaene, S., y Zorzi, M. (2010). Numerical estimation in preschoolers. Developmental Psychology, 46, 545–551.
- Brankaer, C., Ghesquière, P., y De Smedt, B. (2017). Symbolic magnitude processing in elementary school children: A group administered paper-and-pencil measure (SYMP Test). Behavior Research Methods, 49, 1361-1373.
- Brissiaud, R., y Sander, E. (2010). Arithmetic word problem solving: a Situation Strategy First framework. Developmental Science, 13, 92-107.
- Chen, Q., y Li, J. (2014). Association between individual differences in nonsymbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163–172.
- Dehaene, S. (2011). The number sense: How the mind creates mathematics. New York: Oxford University Press.
- De Smedt, B., Noël, M. P., Gilmore, C., y Ansari, D. (2013). How do symbolic and nonsymbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2, 48–55.
- Fazio, L. K., Bailey, D. H., Thompson, C. A., y Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53–72.
- Feigenson, L., Dehaene, S., y Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307–314.
- Halberda, J., y Feigenson, L. (2008). Developmental change in the acuity of the ‘number sense’: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44, 1457–1465.
- Lefevre, J-O., Wells, E., y Sowinski, C. (2016). Individual differences in basic arithmetical processes in children and adults. En R. Cohen KAdosh y A. Dowker (Eds.), The Oxford handbook of numerical cognition ((pp. 895-914). Oxford: Oxford University Press.
- Leibovich, T., y Ansari, D. (2016). The symbol-grounding problem in numerical cognition: A review of theory, evidence, and outstanding questions. Canadian Journal of Experimental Psychology, 70, 12-23.
- Libertus, M. E., Feigenson, L., y Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14, 1292-1300.
- Lipton, J. S., y Spelke, E. S. (2005). Preschool children’s mapping of number words to nonsymbolic numerosities. Child Development, 76, 978-988.
- Linsen, S., Verschaffel, L., Reynvoet, B., y De Smedt, B. (2014). The association between Children’s numerical magnitude processing and mental multi-digit subtraction. Acta Psychologica, 145, 75-83.
- Lyons, I. M., y Ansari, D. (2015). Foundations of Children’s Numerical and Mathematical Skills: The Roles of Symbolic and Nonsymbolic Representations of Numerical Magnitude. En J. B. Benson (Ed.), Advances in Child Development and Behavior, Vol. 48, (pp. 93-116). Burlington: Academic Press.
- Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., y Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1-6. Developmental Science, 17, 714-726.
- Melby-Lervåg, M., Lyster, S. H., y Hulme, C. (2012) Phonological skills and their role in learning to read: A Meta-Analytic Review. Psychological Bulletin, 138, 322–352.
- Mundy, E., y Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number. Journal of Experimental Child Psychology, 103, 490–502.
- Nosworthy, N., Bugden, S., Archibald, Evans, B. y Ansari, D. (2013). A twominute paper-and-pencil test of symbolic and nonsymbolic numerical magnitude processing explains variability in primary school children’s arithmetic competence. PLoS ONE, 8(7), e67918.
- Orrantia, J., San Romualdo, S., Matilla, L., Sánchez, R., Múñez, D. y Verschaffel, L. (2017). Marcadores nucleares de la competencia aritmética en preescolares. Psychology, Society, & Education, 9, 121-124.
- Reynvoet, B., y Sasanguie, D. (2016). The symbol grounding problem revisited: a thorough evaluation of the ANS mapping account and the proposal of an alternative account based on symbol-symbol associations. Frontiers in Psychology, 7:1581.
- Riley, N. S., Greeno, J., y Heller, J. I. (1983). Development of children’s problem solving ability in arithmetic. In H. P. Ginsburg (Ed.), The development of mathematical thinking (pp. 153-196). New York: Academic Press.
- Sasanguie, D., Göbel, S. M., Moll, K., Smets, K., y Reynvoet, B. (2013). Approximate number sense, symbolic number processing, or numberspace mappings: What underlies mathematics achievement? Journal of Experimental Child Psychology, 114, 418-431.
- Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., y De Smedt, B. (en prensa). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: a meta-analysis. Developmental Science. doi:10.1111/desc.12372.
- Siegler, R. S. (2016). Magnitude knowledge: the common core of numerical development. Developmental Science, 19, 341-361.
- Vanbinst, K., Ghesquière, P., y De Smedt, B. (2015). Does numerical processing uniquely predict first graders’ future development of single-digit arithmetic? Learning and Individual Differences, 37, 153-160.
- Xenidou-Dervou, I., Molenaar, D., Ansari, D., van der Schoot, M., y van Lieshout, E. C. D. M. (en prensa). Nonsymbolic and symbolic magnitude comparison skills as longitudinal predictors of mathematical achievement. Learning and Instruction, 50, 1-13.
- Yuste, C., Franco, J., y Palacios, J. M. (2013). Test ICCE de Inteligencia. Madrid: ICCE Publicaciones.
- Yuste, C., Yuste, D., Martínez, R. y Galve, J. L. (2012). BADyG. Batería de Aptitudes Generales y Diferenciales. Madrid: CEPE.