Computational and theoretical developements for (time dependent) density functional theoryexchange and correlation functionals, numerical propagators, and combination with optimal control theory
- Gómez Pueyo, Adrián
- Alberto Castro Barrigón Director
Universidad de defensa: Universidad de Zaragoza
Fecha de defensa: 10 de julio de 2020
- Julio A. Alonso Presidente/a
- Jesús Clemente-Gallardo Secretario/a
- Shunsuke Sato Vocal
Tipo: Tesis
Resumen
In this thesis we present computational and theoretical developments for density functional theory (DFT) and time dependent density functional theory (TDDFT). We have explored a new possible route to improve exchange and correlation functionals (XCF) in DFT, tested and developed numerical propagators for TDDFT, and applied a combination of optimal control theory with TDDFT. In recent years, DFT has become the most used method in the electronic structure field thanks to its unparalleled precision/computational cost relationship. We can use DFT to accurately calculate many physical and chemical properties of atoms, molecules, nanostructures, and bulk materials. The main factor that determines the precision that we can obtain using DFT is the XCF, an unknown object for which hundreds of different approximations have been proposed. Some of these approximations work well enough for certain situations, but to this day there is no XCF that can be reliably applied to any arbitrary system. Moreover, there is no clear way for a systematic refinement of these functionals. We propose and explore, for one-dimensional systems, a new way to optimize them, based on establishing a relationship with the electron-electron interaction. TDDFT is the extension of DFT to time-dependent and excited-states problems, and it is also one of the most popular methods (sometimes the only practical one) in the electronic structure community to deal with them. Once again, the reason behind its popularity is its accuracy/computational cost ratio, which allows us to tackle bigger, more complex systems. It can be used in combination with Ehrenfest dynamics, a non-adiabatic type of molecular dynamics. We have furthermore combined both TDDFT and Ehrenfest dynamics with optimal control theory, a scheme that has allowed us, for example, to predict the shapes of the laser pulses that induce a Coulomb explosion in different sodium clusters. Despite the good numerical performance of TDDFT compared to other methods, we found that these computations were still quite expensive. Motivated by this fact, we have also dedicated a part of the thesis work to computational research. In particular, we have studied and implemented families of numerical propagators that had not been tested in the context of TDDFT. More concretely, linear multistep schemes, exponential Runge-Kutta formulas, and commutator-free Magnus expansions. Moreover, we have implemented modifications of these commutator-free Magnus methods for the propagation of the classical-quantum equations that result of combining Ehrenfest dynamics with TDDFT.