Estimación adaptativa bayesiana aplicada a la localización de usuarios móviles

  1. Prieto Tejedor, Javier
Dirigida por:
  1. Santiago Mazuelas Franco Codirector/a
  2. Patricia Fernández Reguero Codirectora

Universidad de defensa: Universidad de Valladolid

Fecha de defensa: 20 de noviembre de 2012

Tribunal:
  1. Evaristo Abril Domingo Presidente
  2. Rubén Mateo Lorenzo Toledo Secretario
  3. Álvaro Hernández Alonso Vocal
  4. Jesús Ureña Ureña Vocal
  5. Jesús Cid Sueiro Vocal

Tipo: Tesis

Resumen

La popularidad de los sistemas de posicionamiento satelitales en espacios abiertos ha generado una fuerte demanda de sistemas que los suplan en entornos complejos, donde estos fallan. Sin embargo, las características del canal de propagación inalámbrico en estos entornos son dinámicas e impredecibles. A su vez, existen situaciones en las que no hay una infraestructura inalámbrica operativa. En esta Tesis Doctoral, presentamos un marco teórico y algoritmos para la fusión de datos en sistemas de localización inalámbrica desplegados en entornos complejos. Las técnicas presentadas hacen uso de modelos adaptativos para acomodarse a las condiciones cambiantes del canal de propagación. Estas técnicas fusionan información previa y medidas de tiempo de llegada, potencia recibida, fuerza y velocidad angular, de manera óptima desde un punto de vista Bayesiano. Para evaluar los métodos propuestos, hemos utilizado medidas recogidas por dispositivos inalámbricos comerciales y sensores inerciales de bajo coste. Así mismo, hemos comparado el rendimiento obtenido con el de implementaciones convencionales y con el límite teórico provisto por la cota de Cramér-Rao. Tanto los resultados empíricos como de simulación muestran una importante mejora respecto a los enfoques convencionales, obteniendo un error próximo a la cota de Cramér-Rao.