Integración numérica de órbitas periódicas con métodos multipaso

  1. Cano Urdiales, Begoña
Dirigée par:
  1. Jesús María Sanz Serna Directeur/trice

Université de défendre: Universidad de Valladolid

Année de défendre: 1997

Jury:
  1. Gerardo Gómez Muntané President
  2. Francisco Javier de Frutos Baraja Secrétaire
  3. Rafael Ortega Ríos Rapporteur
  4. César Palencia de Lara Rapporteur
  5. Juan Bosco García Archilla Rapporteur

Type: Thèses

Teseo: 61093 DIALNET

Résumé

BASANDONOS EN NUESTRO ESTUDIO DEL CRECIMIENTO DEL ERROR AL INTEGRAR ORBITAS PERIODICAS CON METODOS NUMERICOS DE UN PASO, DECIDIMOS GENERALIZAR NUESTROS RESULTADOS A METODOS MULTIPASO,EL PRIMER CAPITULO EXPONE COMO CRECEN LOS COEFICIENTES DEL DESARROLLO EN POTENCIAS DE LA LONGITUD DE PASO DEL ERROR CUANDO EL METODO CON EL QUE SE INTEGRA ES FUERTEMENTE ESTABLE. MENCION ESPECIAL MERECEN LOS PROBLEMAS DIFERENCIALES REVERSIBLES. EL SEGUNDO CAPITULO ES UN ESTUDIO DE LOS METODOS DEBILMENTE ESTABLES. LOS RESULTADOS OBTENIDOS SON BASTANTE NEGATIVOS, CON LO CUAL LOS METODOS MULTIPASO SIMETRICOS, QUE TAN BUENAS PROPIEDADES MUESTRAN EN EL CASO DE METODOS DE UN PASO, NO RESULTAN EN ABSOLUTO COMPETITIVOS. POR ULTIMO, EN EL CAPITULO TERCERO DEMOSTRAMOS QUE LA SIMETRIA SI PRODUCE UN CRECIMIENTO DEL ERROR FAVORABLE EN UNA GRAN CANTIDAD DE METODOS MULTIPASO PARA ECUACIONES DE SEGUNDO ORDEN.