Dinámica oscilante de campos de vectores analíticos
- Felipe Cano Torres Zuzendaria
- Robert Moussu Zuzendaria
Defentsa unibertsitatea: Universidad de Valladolid
Fecha de defensa: 1999(e)ko urria-(a)k 15
- José Manuel Aroca Hernández-Ros Presidentea
- Jean-Marie Lion Idazkaria
- Freddy Dumortier Kidea
- Claude Roche Kidea
- Sergei Yakovenko Kidea
Mota: Tesia
Laburpena
Se estudian las propiedades:Oscilacion existencia de tangente, existencia de tangentes ileradas, contacto plano con una semirrama analítica, giro en espiral en dimensión dos y giro alrededor de una semirrama analítica en dimensión tres(ejes del giro axial) para curvas parametrizadas y soluciones de campos de vectores analíticos que se acumulan en un punto, Los resultados son: -Una solución de un campo en dimensión tres que oscila y tiene las tangentes iteradas gira alrededor de un eje de giro axial invariante para el campo. -Un eje de giro axial para una solución, no compuesto por singularidades del campo (no degenerado) es eje de giro para todas las soluciones en un entorno suyo. -El número de ejes de giro no degenerados es localmente finito. -Un eje de giro liso no degenerado presenta giro uniforme para ciertas coodenadas. Se estudian los campos de vectores,gradiantes analíticos para los que se obtienen los resultados siguientes: -Prueba de la Conjetura del Gradiante de Thom para soluciones que se acumulan fuera del cono tangente. -Prueba de la Conjetura Geometrica(no oscilación) para gradiantes de funciones de orden 2 en dimension tres. -Las gradientes en dimension tres no tienen ejes de giro axial no degenerados.