Series y funciones Gevrey en varias variables
- Zurro Moro, María Ángeles
- José Manuel Aroca Hernández-Ros Director/a
Universidad de defensa: Universidad de Valladolid
Año de defensa: 1994
- Stanislaw Lojasiewicz Presidente/a
- Felipe Cano Torres Secretario
- Jean Pierre Ramis Vocal
- José Luis Vicente Córdoba Vocal
- Antonio Campillo López Vocal
Tipo: Tesis
Resumen
LOS RESULTADOS MAS IMPORTANTES DE LA MEMORIA SON: A) EL TEOREMA DE DIVISION DE WEIERSTRASS-HIRONAKA PARA SERIES GEVREY Y SUS CONSECUENCIAS ALGEBRAICAS, B) UNA NUEVA CARACTERIZACION DE LA EXISTENCIA DE DESARROLLOS ASINTOTICOS FUERTE: "UNA FUNCION TIENE DESARROLLO ASINTOTICO FUERTE EN UN POLISECTOR PROPIO V SI Y SOLO SI PARA CADA SUBPOLISECTOR CERRADO DE V LA FUNCION ADMITE UNA EXTENSION C . C) SE MUESTRA QUE PARA CADA PUNTO EXISTE UNA SUMA PARCIAL DE LA SERIE ASINTOTICA QUE APROXIMA A LA FUNCION DE MANERA EXPONENCIALMENTE PLANA, TANTO EN EL CASO EN QUE LA FUNCION TENGA DESARROLLO ASINTOTICO FUERTE COMO DEBIL. D) SE GENERALIZA A VARIAS VARIABLES EL ISOMORFISMO DE MALGRANGE RELATIVO AL CALCULO DEL PRIMER GRUPO DE COHOMOLOGIA DE CECH A VALORES EN EL HAZ DE FUNCIONES CON DESARROLLO ASINTOTICO TOTAL NULO SOBRE EL TORO N-DIMENSIONAL.