Utilización de redes neuronales para la optimización de procesos de control de calidad mediante ultrasonidos en uniones soldadas por resistencia por puntos

  1. MARTÍN LLORENTE, ÓSCAR
Zuzendaria:
  1. Manuel Federico López Aparicio Zuzendaria

Defentsa unibertsitatea: Universidad de Valladolid

Fecha de defensa: 2004(e)ko abendua-(a)k 21

Epaimahaia:
  1. Felipe Montoya Moreno Presidentea
  2. Fernando Martín Pedrosa Idazkaria
  3. Antonio Portolés García Kidea
  4. José Ramón Ibars Almonacil Kidea
  5. Vicente Amigó Borrás Kidea

Mota: Tesia

Teseo: 126633 DIALNET

Laburpena

La soldadura por resistencia por puntos es el principal proceso de unión de chapa metálica en la industria del automóvil, donde la tendencia de reducir el número de puntos de soldadura por vehículo hace necesaria la optimización y puesta a punto de sistemas fiables de control de calidad. El presente trabajo de investigación desarrolla un método eficiente de aplicación industrial para llevar a cabo automáticamente la clasificación de puntos de soldadura en función de su nivel de calidad. Dicho método utiliza como herramienta redes neuronales del tipo perceptrón multicapa con el algoritmo de aprendizaje levenberg-marquardt. Considerando que los ensayos no destructivos por ultrasonidos, y en particular el método de "impulso-eco", se pueden adaptar muy bien a la inspección automatizada de puntos de soldadura por resistencia pero presentan problemas motivados por la pérdida de eficiencia en la interpretación de los oscilogramas (indicaciones) de ultrasonidos, se han desarrollado dos vías operativas. La primera vía desarrolla un modelo neuronal que trabaja como una prolongación del proceso de control de calidad mediante ultrasonidos, clasificando los oscilogramas obtenidos en cuatro posibles niveles de calidad, con una capacidad de generalización del 95,16 %. La segunda vía desarrolla un modelo neuronal que permite estimar la calidad de un punto de soldadura a partir del valor de ciertas variables del proceso de soldeo, con una capacidad de generalización del 93,75 %. La segunda vía constituye más una herramienta predictiva de la calidad que una metodología integrada dentro del proceso de control de calidad como es la primera vía.