Diferencias de género en la percepción de la ciudadanía española sobre la Ciencia de Datos

  1. Patricia Sánchez-Holgado 1
  2. María Marcos-Ramos 1
  3. Beatriz González-de-Garay-Domínguez 1
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Revista:
Doxa Comunicación: revista interdisciplinar de estudios de comunicación y ciencias sociales

ISSN: 1696-019X

Año de publicación: 2021

Número: 33

Páginas: 235-256

Tipo: Artículo

DOI: 10.31921/DOXACOM.N33A1126 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Doxa Comunicación: revista interdisciplinar de estudios de comunicación y ciencias sociales

Objetivos de desarrollo sostenible

Resumen

Este artículo tiene como objetivo comprobar si existen diferencias de género en el conocimiento y actitudes de la ciudadanía española hacia la ciencia de datos, además de si estas percepciones se vieron modificadas por la pandemia. Para ello se ha realizado una encuesta online con preguntas cerradas a una muestra representativa de 1105 ciudadanos y ciudadanas en dos oleadas (enero y octubre de 2020) que permitieron comparar en qué grado la pandemia por Covid-19 ejerció influencia. En los resultados se observa que en la primera oleada el conocimiento sobre Big Data e Inteligencia Artificial es moderado, siendo mayor en hombres, especialmente en Big Data; que el grado de interés disminuye en la segunda oleada en ambos géneros y apunta a varias diferencias de género en la percepción de beneficios y riesgos en sus aplicaciones: los hombres perciben más beneficios que las mujeres, mientras que las mujeres perciben más riesgos en general en todas las aplicaciones tecnológicas en la primera oleada, pero en la segunda sube su percepción de beneficios hasta casi igualar a los hombres. Se observa que en la segunda oleada los riesgos han aumentado para ambos géneros y que las diferencias entre ambos no resultan significativas.

Información de financiación

Este trabajo forma parte del proyecto DATASCIENCE SPAIN, sobre el conocimiento y la percepción de la ciencia de los datos, el big data y la inteligencia artificial, desarrollado en la Universidad de Salamanca, por miembros del Observatorio de los Contenidos Audiovisuales. Está financiado con referencia FCT-18-13437, por la Fundación Española para la Ciencia y la Tecnología (FECYT), organismo perteneciente al Ministerio de Ciencia e Innovación de España, en la Convocatoria de ayudas para el fomento de la cultura científica, tecnológica y de la innovación

Financiadores

Referencias bibliográficas

  • Bauer, M. W., y Jensen, P. (2011). The mobilization of scientists for public engagement. Public Understanding of Science, 20(1), 3–11. https://doi.org/10.1177/0963662510394457
  • Berman, F. D. y Bourne, P. E. (2015). Let's Make Gender Diversity in Data Science a Priority Right from the Start. PLOS Biology, 13 (7). https://doi.org/10.1371/journal.pbio.1002206
  • Bustamante Alonso, N. B., y Guillén Alonso, S. Th. (2017). Un acercamiento al Big Data y su uti-lización en comunicación. Mediaciones Sociales, (16), 115–134. https://doi.org/10.5209/MESO.58112
  • Calvo-Rubio, L. M., Ufarte-Ruiz, Mª J. (2020). Percepción de docentes universitarios, estudiantes, responsables de innovación y periodistas sobre el uso de inteligencia artificial en periodismo. El profesional de la información, v. 29, n. 1, e290109. https://doi.org/10.3145/epi.2020.ene.09
  • Comisión Interamericana de Mujeres. (2020). COVID-19 en la vida de las mujeres. In OAS Cataloging-in-Publication Data. http://www.oas.org/cim%0Ahttp://www.oas.org/es/cim/docs/ArgumentarioCOVID19-ES.pdf
  • D'Ignazio, C. y Klein, L. F. (2020). Data feminism. MIT Press.
  • Díaz Martínez, C., Díaz García, P. y Navarro Sustaeta, P. (2020). Sesgos de género ocultos en los macrodatos y revelados mediante redes neurales: ¿hombre es a mujer como trabajo es a madre?. Revista Española de Investigaciones Sociológicas, 172: 41-60. http://dx.doi.org/10.5477/cis/reis.172.41
  • European Commission (2014). Special Eurobarometer 419: Public perceptions of science, research and innovation (Issue October). European Commission. https://doi.org/10.2777/95599
  • European Commission (2017a). Special Eurobarometer 460: Attitudes towards the impact of digitisation and automation on daily life. https://doi.org/10.2759/835661
  • European Commission (2017b). Special Eurobarometer 464a: Europeans’ attitudes towards cyber security Fieldwork (Issue June). European Commission. https://doi.org/10.2838/009088
  • European Commission (2020). On Artificial Intelligence - A European approach to excellence and trust. https://doi.org/10.1017/CBO9781107415324.004
  • FECYT Fundación Española para la Ciencia y la Tecnología (2018). IX Encuesta de Percepción Social de la Ciencia y la Tecnología 2018. https://icono.fecyt.es/sites/default/files/filepublicaciones/18/epscyt2018_informe_0.pdf
  • FECYT Fundación Española para la Ciencia y la Tecnología. (2021). Percepción social de la ciencia y la tecnología en España 2020. https://icono.fecyt.es/sites/default/files/filepublicaciones/21/percepcion_social_de_la_ciencia_y_la_tecnologia_2020_informe_completo_0.pdf
  • Felt, U. (ed). (2007). Optimising public understanding of science and technology, 610–644.
  • Finucane, M. L., Slovic, P., Mertz, C. K., Flynn, J. y Satterfield, Th. A. (2000). Gender, race, and perceived risk: The “white male” effect. Health, Risk & Society, 2(2), 159–172. https://doi.org/10.1080/713670162
  • Hayes, B. C., y Tariq, V. N. (2000). Gender differences in scientific knowledge and attitudes toward science: a comparative study of four Anglo-American nations. Public Understanding of Science, 9(4), 433–447. https://doi.org/10.1088/0963-6625/9/4/306
  • Howard, A., Borenstein, J. (2018). The Ugly Truth About Ourselves and Our Robot Creations: The Problem of Bias and Social Inequity. Sci Eng Ethics, 24, 1521–1536. https://doi.org/10.1007/s11948-017-9975-2
  • Instituto de las Mujeres y para la Igualdad de Oportunidades. (2020). “La perspectiva de género, esencial en la respuesta a la COVID-19.” In Catálogo de publicaciones de la Administración General del Estado.
  • Jurgenson, N. (2014). View from nowhere. The New Inquiry. October 9. https://thenewinquiry.com/essays/view-from-nowhere/
  • Leavy, S. (2018). “Gender bias in artificial intelligence: the need for diversity and gender theory in machine learning”. In Proceedings of the 1st International Workshop on Gender Equality in Software Engineering (GE '18). Association for Computing Machinery, New York, NY, USA, 14–16. https://doi.org/10.1145/3195570.3195580
  • Mayer-Schönberger, V., & Cukier, K. (2013). Big Data. La revolución de los datos masivos. Turner Publicaciones S.L.
  • McQuillan, D. (2018). Data science as machinic neoplatonism. Philosophy & Technology, 31(2), 253-272. https://doi.org/10.1007/s13347-017-0273-3
  • Miller, J. D. (2004). Public Understanding of, and Attitudes toward, Scientific Research: What We Know and What We Need to Know. Public Understanding of Science, 13(3), 273–294. https://doi.org/10.1177/0963662504044908
  • Miller, S. (2001). Public understanding of science at the crossroads. Public Understanding of Science, 10(1), 115–120. https://doi.org/10.3109/a036859
  • Monleón Getino, A. (2015). El impacto del Big-data en la Sociedad de la Información. Significado y utilidad. Historia y Comunicación Social, 20(2), 427–445. https://doi.org/10.5209/rev_HICS.2015.v20.n2.51392
  • Montaña Blasco, M., Ollé Castellà, C., y Lavilla Raso, M. (2020). Impacto de la pandemia de Covid-19 en el consumo de medios en España. Revista Latina, (78), 155-167. https://doi.org/10.4185/RLCS-2020-1472
  • ONU Mujeres. (2021). Los efectos del COVID-19 sobre las mujeres y las niñas. UnWomen. https://interactive.unwomen.org/multimedia/explainer/covid19/es/index.html
  • Palomares Ruiz, A. (2004). Profesorado y educación para la diversidad en el siglo XXI. Universidad de Castilla la Mancha.
  • Pearson, G. (2001). The participation of scientists in public understanding of science activities: The policy and practice of the U.K. Research Councils. https://doi.org/10.3109/a036860
  • Samoili, S., López Cobo, M., Gómez, E., De Prato, G., Martínez-Plumed, F., & Delipetrev, B. (2020). AI Watch - Defining Artificial Intelligence. Towards an operational definition and taxonomy of artificial intelligence. In Joint Research Centre (European Commission). https://doi.org/10.2760/382730
  • Sánchez-Holgado, P., Arcila-Calderón, C., y Frías-Vázquez, M. (2021). El papel de los y las periodistas españoles ante la comunicación de la ciencia de datos en medios en línea. Revista Prisma Social, (32), 344-375. https://revistaprismasocial.es/article/view/3901
  • Tannenbaum, C., Ellis, Robert P., Eyssel, F., Zou, J. y Schiebinger, L. (2019). Sex and gender analysis improves science and engineering. Nature, 575, 137–146. https://doi.org/10.1038/s41586-019-1657-6