Dry weight loss in leaves of dominant species in a successional sequence of the Mesopotamian Espinal (Argentina)

  1. Mendoza, Carlos A.
  2. Gallardo, Juan F.
  3. Turrión, Maria B.
  4. Pando, Valentín
  5. Aceñolaza, Pablo G.
Revista:
Forest systems

ISSN: 2171-5068

Año de publicación: 2017

Volumen: 26

Número: 3

Tipo: Artículo

DOI: 10.5424/FS/2017263-11561 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Forest systems

Resumen

Aim of study: compare litter decomposition dynamics among different species within a single forest type and also between a single species in different forest successional stages.Area of study: different forests of a known successional sequence of the Mesopotamian Espinal, placed in Villaguay Department, Entre Ríos Province, Argentina.Material and methods: A standard “litter bags” technique was employed. Chemical analyses of C and N were performed for leaves. A regression analysis was applied and data were fitted to a double exponential model. Means estimated among forests and species within each forest were compared using the Tukey-Kramer test.Main results: The model predicted that leaves would completely mineralize in the mid-term. Leaf decomposition rate in different species (both in the Secondary forest and Mature forest) had dry matter residues in the following decreasing order: Acacia caven > Prosopis nigra > Prosopis affinis > Celtis ehrenbergiana. Research highlights: Successional stage was not found to be a factor determining the decomposition rate among species. Different decomposition rates, observed among different species, would not be attributed to initial quality of residues in terms of C and N, but would be associated with a positive feedback process related to nutrient cycle; thus, a greater decomposition would increase nutrient availability and, consequently, litterfall input.

Información de financiación

Aim of study: To compare litter decomposition dynamics among different species within a single forest type and also between a single species in different forest successional stages. Area of study: Different forests of a known successional sequence of the Mesopotamian Espinal, placed in Villaguay Department, Entre Ríos Province, Argentina. Material and methods: A standard “litter bags” technique was employed. Chemical analyses of C and N were performed for leaves. A regression analysis was applied and data were fitted to a double exponential model. Means estimated among forests and species within each forest were compared using the Tukey-Kramer test. Main results: The model predicted that leaves would completely mineralize in the mid-term. Leaf decomposition rate in different species (both in the Secondary forest and Mature forest) had dry matter residues in the following decreasing order: Acacia caven > Prosopis nigra > Prosopis affinis > Celtis ehrenbergiana. Research highlights: Successional stage was not found to be a factor determining the decomposition rate among species. Different decomposition rates, observed among different species, would not be attributed to initial quality of residues in terms of C and N, but would be associated with a positive feedback process related to nutrient cycle; thus, a greater decomposition would increase nutrient availability and, consequently, litterfall input. Additional keywords: organic matter; decomposition; litter; dry forest; modeling; plant succession. Abbreviations used: IF (Initial Forest); MF (Mature Forest); SF (Secondary Forest). Authors´ contributions: CAM and PGA performed the experiments and wrote the paper with JFGL. MBT and VP analyzed the data. Citation: Mendoza, C. A.; Gallardo, J. F.; Turrión, M. B.; Pando, V.; Aceñolaza, P. G. (2017). Dry weight loss in leaves of dominant species in a successional sequence of the Mesopotamian Espinal (Argentina). Forest Systems, Volume 26, Issue 3, e017. https://doi. org/10.5424/fs/2017263-11561. Received: 19 Apr 2017 Accepted: 12 Dec 2017 Copyright © 2017 INIA. This is an open access article distributed under the terms of the Creative Commons Attribution (CC-by) Spain 3.0 License. Funding: UADER, Paraná, Argentina (Projects PIDA–2009 and PIDP-2015); Erasmus Mundus program (funded the stay in Spain and the work performed by CAM at the ETSIA, University of Valladolid, Spain, and at IRNASa, CSIC, Salamanca, Spain). Competing interests: The authors have declared that no competing interests exist. Correspondence should be addressed to Pablo G. Aceñolaza: acenolaza@gmail.com

Financiadores

    • PIDP-2015

Referencias bibliográficas

  • Xu G, Hu Y, Wang S, Zhang Z, Chang X, Duan J, Luo C, Chao Z, Su A,Lin Q, Li Y, Du M, 2010. Effects of litter quality and climate change along an elevation gradient on litter mass loss in an alpine meadow ecosystem on the Tibetan Plateau. Plant Ecol 209: 257-268. https://doi.org/10.1007/s11258-009-9714-0
  • Aceñolaza FG, 2007. Geología y recursos geológicos de la Mesopotamia Argentina. Serie de Correlación Geológica 22: 149-155.
  • Aceñolaza PG, Gallardo JF, 1994. Pérdida de peso seco en hojarasca de Alnus acuminata en la provincia de Tucumán (Argentina). Bosque 15: 51-54. https://doi.org/10.4206/bosque.1994.v15n1-06
  • Arellano R, Paolini J, Vásquez L, Mora E, 2004. Producción y descomposición de hojarasca en tres agroecosistemas de café en el Estado de Trujillo, Venezuela. Revista Forestal Venezolana 48: 7-14.
  • Arturi M, 2006. Situación ambiental en la ecorregión Espinal. In: La situación ambiental argentina 2005; Brown A, et al. (eds.), pp: 241-246. Fundación Vida Silvestre Argentina, Buenos Aires.
  • Bueis T, Felipe Bravo F, Valentín V, Turrión MB, 2017. Influencia de la densidad del arbolado sobre el desfronde y su reciclado en pinares de repoblación del norte de España. Bosque 38(2): 401-407. https://doi.org/10.4067/S0717-92002017000200017
  • Bunnel FL, Tait DEN, 1974. Mathematical simulation models of decomposition: Soil organisms and decomposition in Tundra. Tundra Biome Steering Committee. pp.: 207-226. Stockholm.
  • Cabrera AL, 1976. Regiones fitogeográficas argentinas. Enciclopedia Argentina de Agricultura y Jardinería (Buenos Aires) 2: 1-85.
  • Carranza C, Noé L, Merlo C, Ledesma M, Abril A, 2012.Effect of forest clearing type on the decomposition of native and introduced pastures in the Arid Chaco, Argentina. Revista de Investigaciones Agropecuarias 38: 97-107.
  • Carrera AL, Mazzarino MJ, Bertiller MB, Del Valle HF, Carretero EM, 2009.Plant impacts on nitrogen and carbon cycling in the Monte phytogeographical province, Argentina. J Arid Environ 73: 192-201. https://doi.org/10.1016/j.jaridenv.2008.09.016
  • Castellanos J, León JD, 2011. Descomposición de hojarasca y liberación de nutrientes en plantaciones de Acacia mangium (Mimosaceae) establecidas en suelos degradados de Colombia. Revista de Biología Tropical 59: 113-128.
  • Fioretto A, Di Mardo C, Papa S, Fuggi A, 2005. Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem. Soil Biol Biochem 37: 1083-1091. https://doi.org/10.1016/j.soilbio.2004.11.007
  • Gallardo JF, González MI, 2004. Sequestration of C in a Spanish chestnut coppice. Invest Agrar: Sist Recur For Vol. extra: 108-113.
  • Gallardo JF, Merino A, 2007. El ciclo del carbono y la dinámica de los sistemas forestales. In: El papel de los bosques españoles en la mitigación del cambio climático; Bravo F (Coord.), pp: 43-64. Fundación Gas Natural, Barcelona.
  • Goma-Tchimbakala J, Bernhard-ReversatF, 2006.Comparison of litter dynamics in three plantations of an indigenous timber-tree species (Terminalia superba) and a natural tropical forest in Mayombe, Congo. Ecol Manage 229: 304-313. https://doi.org/10.1016/j.foreco.2006.04.009
  • INTA, 2000. Carta de Suelos de la República Argentina Departamento Villaguay, 250pp. Convenio INTA-Gobierno de Entre Ríos, Paraná (Argentina).
  • Jenny H, Gessel SP, Binham FT, 1949. Comparative study of decomposition rates of organic nutrients in temperate and tropical regions. Soil Sci 68: 419-432. https://doi.org/10.1097/00010694-194912000-00001
  • León JD, González MI, Gallardo JF, 2009. Retranslocación y eficiencia en el uso de nutrientes en bosques del centro de Antioquia. Rev CFor 12: 119-140.
  • León JD, González MI, Gallardo JF, 2011. Comparación del ciclo biogeoquímico en bosques naturales y plantaciones de coníferas en ecosistemas de alta montaña de Colombia. Revista de Biología Tropical 59(4): 1883-1894.
  • Lewis JP, Prado DE, Barberis IM, 2006. Los remanentes de bosques del Espinal en la provincia de Córdoba. In: Situación ambiental argentina 2005; Brown AD & Corcuera J (eds.), pp: 254-260. Editorial Fundación Vida Silvestre Argentina, Buenos Aires.
  • McCulloch CE, Searle SR, 2001. Genearalized, linear and mixed models, 4thedn. Wiley-Intersci, NY.
  • Mendoza C, Gallardo JF, Aceñolaza PG, Turrión MB, Pando V, 2012. Producción de hojarasca de bosques pertenecientes a una secuencia sucesional del Espinal Mesopotámico (R. Argentina). In: Aguas, suelos y vegetación en cuencas iberoamericanas; Gallardo JF (Coord.), pp.: 177-196. SIFyQA, Salamanca (Spain).
  • Mendoza CA, Gallardo JF, Aceñolaza PG, Turrión MB, Pando V, 2014. Temporal evolution of litterfall and potential bio-element return in a successional forest sequence of the Espinal Ecoregion, Argentina. Forest Syst 23(3): 411-424. https://doi.org/10.5424/fs/2014233-05007
  • Montagnini F, Jordán CF,2002. Reciclaje de nutrientes. In: Ecología y conservación de bosques neotropicales; Guariguata MR & Kattan G (eds.), pp: 167-191. Editorial Tecnológica, Cartago, Costa Rica.
  • Olson JS, 1963. Energy storage and balance of producers and decomposer in ecological systems. Ecology 44: 322-331. https://doi.org/10.2307/1932179
  • Pérez-Harguindeguy N, Díaz S, Vendramini F, Gurvich DE, Cingolani AM, Giorgis MA, Cabido M, 2007. Direct and indirect effects of climate on decomposition in native ecosystems from central Argentina. Aust Ecol 32: 749-757. https://doi.org/10.1111/j.1442-9993.2007.01759.x
  • Prause J, Lifschitz AP, Dalurzo HC, Agudo DE, 2002.Leaf litterfall and decomposition in a forest of the Argentine Chaco. Comm Soil Sci Plant Anal 33: 3653-3661. https://doi.org/10.1081/CSS-120015913
  • Prause J, Fernández López C, Contreras Leiva SM, Gallardo Lancho JF, 2012. Aporte y descomposición de hojas y reabsorción de N, P y K en un bosque primario de Schinopsis balansae Engl., con y sin manejo silvopastoril, en el Parque Chaqueño húmedo. Facena 28: 41-50.
  • Rojas AE, Saluso JH, 1987. Informe climático de la provincia de Entre Ríos. Publ. Técnica INTA EEA Paraná 14: 1-20.
  • Rovira P, Rovira R, 2010. Fitting litter decomposition datasets to mathematical curves: Towards a generalized. Geoderma 155: 329-343. https://doi.org/10.1016/j.geoderma.2009.11.033
  • SAS Inst.,2005. SAS User's Guide: Basics, version 9.1. Cary, NC, USA.
  • Torres PA, Abril AB, Bucher EH, 2005. Microbial succession in litter decomposition in the Semi-arid Chaco woodland. Soil Biol Biochem 37: 49-54. https://doi.org/10.1016/j.soilbio.2004.04.042
  • Vega Ávila AD, Toro ME, Baigori M, Fernández F, 2010.Influencia de la vegetación en la variación espacial de la abundancia de microorganismos en el desierto del Monte, San Juan, Argentina. Ecología Austral 20: 247-256.
  • Xu G, Hu Y, Wang S, Zhang Z, Chang X, Duan J, Luo C, Chao Z, Su A,Lin Q, Li Y, Du M, 2010. Effects of litter quality and climate change along an elevation gradient on litter mass loss in an alpine meadow ecosystem on the Tibetan Plateau. Plant Ecol 209: 257-268. https://doi.org/10.1007/s11258-009-9714-0