A unified nomenclature for project scheduling problems(RCPSP and RCMPSP)

  1. Félix A. Villafáñez 1
  2. David Poza 1
  3. Adolfo López-Paredes 1
  4. Javier Pajares 1
  1. 1 INSISOC – University of Valladolid. Spain
Revista:
Dirección y organización: Revista de dirección, organización y administración de empresas

ISSN: 1132-175X

Año de publicación: 2018

Número: 64

Páginas: 56-60

Tipo: Artículo

DOI: 10.37610/DYO.V0I64.523 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Dirección y organización: Revista de dirección, organización y administración de empresas

Resumen

Presentamos una formulación unificada para el problema de programación con recursos limitados en entornos mono y multi-proyecto: Resource-Constrained Project Scheduling Problem (RCPSP) y Resource-Constrained Multi-Project Scheduling Problem (RCMPSP), respectivamente. Aunque este tema ha sido tratado ampliamente en la literatura, no nos consta que la nomenclatura empleada para la formulación de ambos problemas haya sido unificada de manera completa, lo que tradicionalmente ha dificultado la comparación entre distintas aproximaciones. Por esta razón, en este artículo proponemos una nomenclatura unificada para ambos problemas.

Información de financiación

Funding. This research has been partially financed

Financiadores

Referencias bibliográficas

  • Alvarez-Valdés Olaguíbel R, Tamarit Goerlich JM (1993a) The project scheduling polyhedron: Dimension, facets and lifting theorems. Eur J Oper Res 67:204–220. doi: 10.1016/0377-2217(93)90062-R
  • Alvarez-Valdés Olaguíbel R, Tamarit Goerlich JM (1993b) The project scheduling polyhedron: Dimension, facets and lifting theorems. Eur J Oper Res 67:204–220. doi: 10.1016/0377-2217(93)90062-R
  • Araúzo JA, Pajares J, Lopez-Paredes A (2010) Simulating the dynamic scheduling of project portfolios. Simul Model Pract Theory 18:1428–1441. doi: 10.1016/j.simpat.2010.04.008
  • Artigues C, Koné O, Lopez P, Mongeau M (2015) Mixed-Integer Linear Programming Formulations. In: Schwindt C, Zimmermann J (eds) Handbook on Project Management and Scheduling Vol.1. Springer International Publishing, Cham, pp 17–41
  • Blazewicz J, Lenstra JK, Rinnooy Kan AHG (1983) Scheduling subject to resource constraints: classification and complexity. Discret Appl Math 5:11–24.
  • Davis EW (1969) An exact algorithm for the multiple constrained project scheduling problem. Yale University
  • Demeulemeester EL, Herroelen WS (2002a) Project Scheduling: A Research Handbook. Kluwer Academic Pub
  • Demeulemeester EL, Herroelen WS (2002b) Project Scheduling: A Research Handbook.
  • Fendley LG (1968) Towards the development of a complete multi-project scheduling system. J Ind Eng 505–515.
  • Gantt HL (1913) Work, wages, and profits. Hive Pub. Co.
  • Gantt HL (1919) Organizing for Work.
  • Hartmann S, Briskorn D (2010) A survey of variants and extensions of the resource-constrained project scheduling problem. Eur. J. Oper. Res. 207:1–14.
  • Kaplan LA (1996) Resource-constrained project scheduling with preemption of jobs. UMI
  • Kaplan LA (1988) RESOURCE-CONSTRAINED PROJECT SCHEDULING WITH PREEMPTION OF JOBS. University of MICHIGAN
  • Klein R (2000) Scheduling of Resource-Constrained Projects, Volumen 10. Kluwer Academic Publishers
  • Koné O, Artigues C, Lopez P, Mongeau M (2011) Eventbased MILP models for resource-constrained project scheduling problems. Comput Oper Res 38:3–13. doi: 10.1016/j.cor.2009.12.011
  • Koné O, Artigues C, Lopez P, Mongeau M (2013) Comparison of mixed integer linear programming models for the resource-constrained project scheduling problem with consumption and production of resources. Flex Serv Manuf J 25:25–47. doi: 10.1007/s10696-012-9152-5
  • Kyriakidis TS, Kopanos GM, Georgiadis MC (2012) MILP formulations for single- and multi-mode resource-constrained project scheduling problems. Comput Chem Eng 36:369–385. doi: 10.1016/j.compchemeng.2011.06.007
  • Lova A, Tormos P (2001) Analysis of Scheduling Schemes and Heuristic Rules Performance in Resource-Constrained Multiproject Scheduling. Ann Oper Res 102:263–286. doi: 10.1023/A:1010966401888
  • Mingozzi A, Maniezzo V, Ricciardelli S, Bianco L (1998) An Exact Algorithm for the Resource-Constrained Project Scheduling Problem Based on a New Mathematical Formulation. Manage Sci 44:714–729. doi: 10.1287/mnsc.44.5.714
  • Pritsker AAB, Watters LJ (1968) A Zero-One Programming Approach to Scheduling with Limited Resources. Santa Monica, California
  • Pritsker AAB, Watters LJ, Wolfe PM (1969) Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach. Manage Sci 16:93–108.
  • Villafañez F, Lopez-Paredes A, Pajares J, de la Fuente D (2014) From the RCPSP to the DRCMPSP : Methodological foundations. In: Proceedings on the International Conference on Artificial Intelligence (ICAI); Athens: 1-6. Athens: The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp).
  • Zuloaga MS (2017) Optimizing resource allocation in a portfolio of projects. Massachusetts Institute of Technology