Invariant surfaces for toric type foliations in dimension three

  1. Cano Torres, Felipe
  2. Molina-Samper, Beatriz
Revista:
Publicacions matematiques

ISSN: 0214-1493

Ano de publicación: 2021

Volume: 65

Número: 1

Páxinas: 291-307

Tipo: Artigo

DOI: 10.5565/PUBLICACIONSMATEMATIQUES.V65I1.383986 DIALNET GOOGLE SCHOLAR lock_openDDD editor

Outras publicacións en: Publicacions matematiques

Resumo

A foliation is of toric type when it has a combinatorial reduction of singularities. We show that every toric type foliation on (C3, 0) without saddle-nodes has invariant surface. We extend the argument of Cano–Cerveau for the nondicritical caseto the compact dicritical components of the exceptional divisor. These components are projective toric surfaces and the isolated invariant branches of the induced foliation extend to closed irreducible curves. We build the invariant surface as a germ along the singular locus and those closed irreducible invariant curves. The result of OrtizBobadilla–Rosales-Gonzalez–Voronin about the distribution of invariant branches indimension two is a key argument in our proof.

Referencias bibliográficas

  • C. Camacho, A. Lins Neto, and P. Sad, Topological invariants and equidesingularization for holomorphic vector fields, J. Differential Geom. 20(1) (1984), 143–174. DOI: 10.4310/jdg/1214438995.
  • M. I. T. Camacho and F. Cano, Singular foliations of toric type, Ann. Fac. Sci. Toulouse Math. (6) 8(1) (1999), 45–52.
  • C. Camacho and P. Sad, Invariant varieties through singularities of holomorphic vector fields, Ann. of Math. (2) 115(3) (1982), 579–595. DOI: 10.2307/ 2007013.
  • F. Cano, Reduction of the singularities of codimension one singular foliations in dimension three, Ann. of Math. (2) 160(3) (2004), 907–1011. DOI: 10.4007/ annals.2004.160.907.
  • F. Cano and D. Cerveau, Desingularization of non-dicritical holomorphic foliations and existence of separatrices, Acta Math. 169(1–2) (1992), 1–103. DOI: 10.1007/BF02392757.
  • F. Cano and J.-F. Mattei, Hypersurfaces int´egrales des feuilletages holomorphes, Ann. Inst. Fourier (Grenoble) 42(1–2) (1992), 49–72.
  • F. Cano and M. Ravara-Vago, Local Brunella’s alternative II. Partial separatrices, Int. Math. Res. Not. IMRN 2015(23) (2015), 12840–12876. DOI: 10. 1093/imrn/rnv087.
  • D. Cerveau and J.-F. Mattei, “Formes int´egrables holomorphes singulieres”, With an English summary, Asterisque 97, Soci´et´e Math´ematique de France, Paris, 1982.
  • P. Fernandez-S ´ anchez and J. Mozo-Fern ´ andez ´ , On generalized surfaces in (C3 , 0), Asterisque 323 (2009), 261–268.
  • J. P. Jouanolou, “Equations de Pfaff algebriques”, Lecture Notes in Mathematics 708, Springer, Berlin, 1979. DOI: 10.1007/BFb0063393.
  • J.-F. Mattei and R. Moussu, Integrales premieres d’une forme de Pfaff analytique, Ann. Inst. Fourier (Grenoble) 28(4) (1978), 229–237.
  • B. Molina-Samper, Global invariant branches of non-degenerate foliations on projective toric surfaces, Preprint 2019. arXiv:1902.04875.
  • L. Ortiz-Bobadilla, E. Rosales-Gonzalez, and S. M. Voronin, On Camacho–Sad’s theorem about the existence of a separatrix, Internat. J. Math. 21(11) (2010), 1413–1420. DOI: 10.1142/S0129167X10006513.
  • R. Remmert, Projektionen analytischer Mengen, Math. Ann. 130 (1956), 410–441. DOI: 10.1007/BF01343236.
  • F. W. Warner, “Foundations of Differentiable Manifolds and Lie Groups”, Scott, Foresman and Co., Glenview, Ill.-London, 1971.