Integración de la estrategia FMBPC en una estructura de control predictivo en lazo cerrado. Aplicación al control de fangos activados

  1. Vallejo, Pedro M. 1
  2. Vega, Pastora 1
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Zeitschrift:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Datum der Publikation: 2022

Ausgabe: 19

Nummer: 1

Seiten: 13-26

Art: Artikel

DOI: 10.4995/RIAI.2021.15793 DIALNET GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: Revista iberoamericana de automática e informática industrial ( RIAI )

Ziele für nachhaltige Entwicklung

Zusammenfassung

This work addresses the integration of two methods or strategies of Model-Based Predictive Control, namely: Fuzzy Model-Based Predictive Control (FMBPC) and Closed-Loop Predictive Control (CLP-MPC). The first of these strategies uses principles of Predictive Functional Control (PFC) and is framed, at the same time, in the field of Intelligent Control (IC). The main objective of the integration is to provide to the FMBPC nonlinear control strategy an optimization procedure that allows the automatic handling of constraints in the control variable. The proposed solution consists of making use of a complementary structure of the CLP-MPC type to determine by optimization, at each sampling instant, the optimal values of a certain additive term, to be added to the FMBPC control law, in such a way that they are satisfied the constraints. The prediction model and base control law necessary to perform the calculations on the CLP-MPC structure are provided by the FMBPC strategy. The proposed FMBPC/CLP mixed strategy has been validated, in simulation, applying it to the control of activated sludge processes in wastewater treatment plants (WWTP), focusing on the imposition of constraints on the control action. The results obtained are satisfactory, observing a good performance of the designed control algorithm, while guaranteeing both the satisfaction of the constraints, which was the main objective, and the stability of the closed-loop system.

Bibliographische Referenzen

  • Adetola, V., & Guay, M., 2010. Integration of real-time optimization and model predictive control. Journal of Process Control, 20(2), 125-133. https://doi.org/10.1016/j.jprocont.2009.09.001
  • Al-Gherwi, W., Budman, H., Elkamel, A., 2013. A robust distributed model predictive control based on a dual-mode approach. Computers and Chemical Engineering, 50, 130-138. https://doi.org/10.1016/j.compchemeng.2012.11.002
  • Babuška, R., 1998a. Fuzzy Modeling for Control. Kluwer Academic Publishers, Boston, MA, USA. https://doi.org/10.1007/978-94-011-4868-9_2
  • Babuška, R., 1998b. Fuzzy Modeling and Identification Toolbox (FMID)-User's Guide; Babuška, R., Delft, The Netherlands.
  • Blachini, F., 1999. Set invariance in control. Automatica, 35, 1747-1767. https://doi.org/10.1016/S0005-1098(99)00113-2
  • Blažič, S., Škrjanc, I, 2007. Design and Stability Analysis of Fuzzy Model-based Predictive Control-A Case Study. J. Intell. Robot. Syst., 49, 279-292, https://doi.org/10.1007/s10846-007-9147-8
  • Boulkaibet, I., Belarbi, K., Bououden, S., Marwala, T., Chadli, M., 2017. A new T-S fuzzy model predictive control for nonlinear processes. Expert Syst. Appl., 88, 132-151, https://doi.org/10.1016/j.eswa.2017.06.039
  • Bououden, S., Chadli, M., Karimi, H., 2015. An ant colony optimization-based fuzzy predictive control approach for nonlinear processes. Inf. Sci., 299, 143-158, https://doi.org/10.1016/j.ins.2014.11.050
  • Camacho, E. F., Bordons, C., 1998. Model Predictive Control. Springer, Great Britain. https://doi.org/10.1007/978-1-4471-3398-8
  • El Bahja, H., 2017. Advanced control strategies based on invariance set theory and economic MPC: application to WWTP. Ph.D. Thesis, Universidad de Salamanca, Salamanca, Spain, 2017.
  • El Bahja, H., S.; Vega, P.; Revollar, S.; Francisco, M., 2018a. One Layer Nonlinear Economic Closed-Loop Generalized Predictive Control for a Wastewater Treatment Plant. Applied Sciences, 8(5), 657. https://doi.org/10.3390/app8050657
  • El Bahja, H., Vega, P., Tadeo, F., & Francisco, M., 2018b. A constrained closed loop MPC based on positive invariance concept for a wastewater treatment plant. International Journal of Systems Science, 49(10), 2101-2115. https://doi.org/10.1080/00207721.2018.1484195
  • Francisco, M., Vega, P., 2006. Diseño Integrado de procesos de depuración de aguas utilizando control predictivo basado en modelos. RIAI-Revista Iberoamericana de Automática e Informática Industrial, 3(4), 88-98, ISSN 1697 7912. https://doi.org/10.1016/S1697-7912(07)70214-5
  • Gilbert, E.G., Tan, K. T., 1991. Linear systems with state and control constraints: the theory and application of maximal output admissible sets. IEEE Trans. AC, 36(9), 1008-1020. https://doi.org/10.1109/9.83532
  • Haber, R., Rossiter, J.A., and Zabet, K.R., 2016. An Alternative for PID control: Predictive Functional Control- A Tutorial. IEEE American Control Conference (ACC), 2016 (ACC2016). Boston, MA, USA, July 06-08. https://doi.org/10.1109/ACC.2016.7526765
  • Henze, M., Grady, C. P. L. Jr, Gujer, W., Marais, G. v. R., Matsuo, T., 1987. Activated Sludge Model No. 1. IAWPRC Scientific and Technical Reports No. 1. London, UK.
  • Limón, D., 2002. Control Predictivo de Sistemas no Lineales con Restricciones: Estabilidad y Robustez. Ph.D. Thesis, Universidad de Sevilla, Sevilla, Spain, 2002.
  • Lyapunov, A.M., 1892. The General Problem of the Stability of Motion (in Russian). Ph.D. Thesis, Kharkov Mathematical Society, Kharkov, Russia.
  • Lyapunov, A.M., 1992. The general problem of the stability of motion. Int. J. Control, 55, 531-534, https://doi.org/10.1080/00207179208934253
  • Maciejowski, J. M., 2002. Predictive Control with Constraints. Pearson Education Limited, Harlow, Essex, UK.
  • Marchetti, A.G., Ferramosca, A. & González, A.H., 2014. Steady-state target optimization designs for integrating real-time optimization and model predictive control. Journal of Process, 24 (1) 129-145. https://doi.org/10.1016/j.jprocont.2013.11.004
  • Michalska, H., Mayne, D., 1993. Robust receding horizon control of constrained nonlinear systems. IEEE Transactions on Automatic Control, 38, 1623-1633. https://doi.org/10.1109/9.262032
  • Mollov, S., Babuska, R., Abonyi, J., Verbruggen, H., 2004. Effective Optimization for Fuzzy Model Predictive Control. IEEE Trans. Fuzzy Syst., 12, 661-675, https://doi.org/10.1109/TFUZZ.2004.834812
  • Moreno, R., 1994. Estimación de Estados y Control Predictivo de Proceso de Fangos Activados. Tesis Doctoral. Facultat de Ciències de la Universitat Autònoma de Barcelona (Spain).
  • Ramírez, K. J. , Gómez, L. M., Álvarez, H., 2014. Dual mode nonlinear model based predictive control with guaranteed stability. Ingeniería y Competitividad, 16(1), 23-34. https://doi.org/10.25100/iyc.v16i1.3710
  • Richalet, J., 1993. Industrial application of model based predictive control. Automatica, 29 (5), 1251-1274. https://doi.org/10.1016/0005-1098(93)90049-Y
  • Richalet, J., O'Donovan, D., 2009. Predictive Functional Control. Principles and Industrial Applications. Springer, London, UK. https://doi.org/10.1007/978-1-84882-493-5
  • Rossiter, J. A., 2003. Model-Based Predictive Control: A Practical Approach. CRC Press LLC, Boca Raton, Florida, EEUU.
  • Roubos, J., Mollov, S., Babuska, R., Verbruggen, H., 1999. Fuzzy model-based predictive control using Takagi-Sugeno models. Int. J. Approx. Reason., 22, 3-30, https://doi.org/10.1016/S0888-613X(99)00020-1
  • Shariati, S., Noske, R., Brockhinke, A., Abel, D., 2015. Model predictive control of combustion instabilities using Closed-loop Paradigm with an incorporated Padé approximation of a phase shifter. 2015 European Control Conference (ECC). July 15-17. Linz, Austria. https://doi.org/10.1109/ECC.2015.7330601
  • Škrjanc, I., Matko, D., 2000. Predictive functional control based on fuzzy model for heat exchanger pilot plant. IEEE Transactions on Fuzzy Systems, 8 (6), 705-712. https://doi.org/10.1109/91.890329
  • Škrjanc, I., Blažič, S., 2016. Fuzzy Model-based Control - Predictive and Adaptive Approaches. In: Angelov, Plamen (Ed.), Handbook on Computational Intelligence. Vol. I. World Scientific, New Jersey, USA, Ch. 6, pp. 209-240. https://doi.org/10.1142/9789814675017_0006
  • Sorcia Vázquez, F. D. J., Garcia Beltran, C. D., Valencia Palomo, G., Guerrero Ramírez, G., Adam Medina, M., Escobar Jiménez, R., 2015. Control Predictivo Distribuido Óptimo Aplicado al Control de Nivel de un Proceso de Cuatro Tanques Acoplados. Revista Iberoamericana de Automática e Informática Industrial, 12, 365-375. https://doi.org/10.1016/j.riai.2015.07.002
  • Takagi, T., Sugeno, M., 1985. Fuzzy Identification of Systems and its Application to Modeling and Control. IEEE Transactions on Systems, Man and Cybernetics, 15 (1), 116 132. https://doi.org/10.1109/TSMC.1985.6313399
  • Vallejo, P. M., Vega, P., 2019. Analytical Fuzzy Predictive Control Applied to Wastewater Treatment Biological Processes. Complex., 2019, 5720185, https://doi.org/10.1155/2019/5720185
  • Vallejo, P. M., Vega, P., 2021. Practical Computational Approach for the Stability Analysis of Fuzzy Model-Based Predictive Control of Substrate and Biomass in Activated Sludge Processes. Processes, 9(3), 531. https://doi.org/10.3390/pr9030531
  • Zadeh, Lotfi A., 1990. Fuzzy Sets and Systems. International Journal of General Systems, 17 (2), 129-138. https://doi.org/10.1080/03081079008935104