Análisis de la dinámica, la estructura y el contenido de los mensajes de Twitterviolencia sexual en #Cuéntalo

  1. Escobar, Modesto
  2. Gil Moreno, Elena
  3. Calvo López, Cristina
Revue:
Empiria: Revista de metodología de ciencias sociales

ISSN: 1139-5737

Année de publication: 2022

Titre de la publication: El Big data en las ciencias sociales

Número: 53

Pages: 89-119

Type: Article

DOI: 10.5944/EMPIRIA.53.2022.32614 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

D'autres publications dans: Empiria: Revista de metodología de ciencias sociales

Objectifs de Développement Durable

Résumé

Las redes sociales online se han ido convirtiendo en uno de los principales vehículos de comunicación y una de las mayores fuentes de información de actualidad. Esta creciente popularidad deja en evidencia la importancia de que los científicos sociales seamos capaces de analizar, interpretar y comprender en profundidad este nuevo tipo de herramientas. Este artículo tiene como objetivo mostrar los diversos métodos de análisis de la información pública obtenida a partir de una de estas redes, Twitter. Para ello tomamos como ejemplificación explicativa el caso #Cuéntalo, un episodio de narrativa compartida iniciado en esta red entre los días 26 y 28 de abril de 2018 tras la conocida sentencia de “La Manada”. A través de este caso se presentan aquí distintas metodologías para el estudio de los contenidos transmitidos, que van desde los análisis descriptivos más elementales hasta los análisis de contenido, pasando por la clasificación de actores relevantes y el descubrimiento de la estructura de las relaciones entre los protagonistas y sus mensajes. Los resultados muestran cómo esta polémica sentencia derivó en una conversación digital viral donde distintas usuarias (en especial periodistas, escritoras y activistas feministas) comenzaron a compartir sus relatos de situaciones de violencia sexual vividas por las participantes o sus conocidas usando esta etiqueta, siendo capaces de identificar a las principales protagonistas, las distintas relaciones que establecieron entre ellas y sus mensajes y los principales temas que se conformaron en torno a ellos. Online social networks have become one of the main communication vehicles and one of the greatest sources of current information. This growing popularity shows the importance of social scientists being able to analyze, interpret and understand in depth this new type of tools. This article aims to show the diverse methods of analysis of public information obtained from one of these networks, Twitter. To do this, we take as an explanatory example the case of #Cuéntalo, an episode of shared narrative that began on this network between April 26 and 28, 2018 after the well-known sentence of “La Manada”. Through this case, we present different methodologies for the study of broadcasted content, ranging from the most elementary descriptive tools to content analysis, passing through the classification of relevant actors and the discovery of the structure of the relationships amongst their protagonists and their messages. The results show how this controversial sentence led to a viral digital conversation where different users (especially journalists, writers, feminists and influencers) began to share their stories of situations of sexual violence experienced by the participants or their acquaintances using this label. Through this analysis, it was possible to identify the main protagonists, the different relationships that they established between them and their messages and the main themes that were formed around them.

Références bibliographiques

  • ALONSO, S., VOLKENS, A. y GÓMEZ, B. (2012). Análisis de contenido de textos políticos. Un enfoque cuantitativo, Madrid, CIS
  • ARCILA, C., BLANCO, D. y VALDEZ, M. B. (2020). “Rechazo y discurso de odio en Twitter: análisis de contenido de los tuits sobre migrantes y refugiados en español”. Revista Española de Investigaciones Sociológicas (172), 21-40.
  • BERELSON, B. y LASZARFELD, P. (1947): The Analysis in Communications Content. Nueva York, University of Chicago y Columbia University.
  • BLASCO-DUATIS, M. y COENDERS, G. (2020). “Análisis de sentimiento de la agenda de los partidos políticos españoles en Twitter durante la Moción de Censura de 2018: Un enfoque de datos composicionales”. Revista Mediterránea de Comunicación, 11(2), 185-198.
  • BLEI, D.M., NG, A.Y., y JORDAN, M.I. (2003). Latent Dirichlet Allocation. The Journal of Machine Learning Research, 3, 993-1022.
  • BLONDEL, V. D., GUILLAUME, J. L., LAMBIOTTE, R., & LEFEBVRE, E. (2008). “Fast Unfolding of Communities in Large Networks”, Journal of. Statistical Mechanics, P10008.
  • BOVET, A. y MAKSE, H. (2019). “Influence of Fake News in Twitter during the 2016 US presidential election”. Nature Communications, 10(1), 1-14.
  • BUCALO, M. S., CALVO, L., CUCCHIETTI, F., GARCIA POVEDANO, D., GARCÍA-SÁEZ, A., FELIPE GÓMEZ, J. & FERNANDA VÉLEZ, D. (2019). “A Constellation of Horrors: Analysis and Visualization of the #Cuéntalo Movement”. Companion Proceedings of The 2019 World Wide Web Conference, 751-754.
  • CASERO-RIPOLLÉS, A. (2020). “Influence of Media on the Political Conversation on Twitter: Activity, Popularity, and Authority in the Digital Debate in Spain”. Icono14, 18(1), 33-57.
  • CONGOSTO, M.L. (2018). Contando cómo se difundió el #cuéntalo, disponible en http:// www.barriblog.com/2018/05/contando-se-difundio-cuentalo/ [consulta: 9/12/2020].
  • CONGOSTO, M.L., BASANTA-VAL, P. y SÁNCHEZ-FERNÁNDEZ, L. (2017). “THoarder: A Framework to Process Twitter Data Streams”. Journal of Network and Computer Applications, 83, 28-39.
  • DEAL, B. E., MARTINEZ, L. S., SPITZBERG, B. H., & TSOU, M. H. (2020). “«I Definitely Did Not Report It When I Was Raped... #WeBelieveChristine #MeToo»: A Content Analysis of Disclosures of Sexual Assault on Twitter”. Social Media+ Society, 6(4), 2056305120974610.
  • ESCOBAR M. y MARTÍNEZ-URIBE L (2020). “Network Coincidence Analysis: The netCoin R Package”. Journal of Statistical Software, 93(11), 1–32.
  • FREELON, D., McIIWAIN, C. y CLARK, M (2016). “Quantifying the Power and Consequences of Social Media Protest”, New Media & Society, 20(3), 990-1011.
  • GILL, R. y ORGAD, S. (2018). “The Shifting Terrain of Sex and Power: From the ‘Sexualization of Culture’ to #MeToo”. Sexualities, 21(8), 1313-1324.
  • GLEASON, B. (2013). “#Occupy Wall Street: Exploring Informal Learning About a Social Movement on Twitter”. American Behavioral Scientist, 57(7), 966-982.
  • GONZÁLEZ-BAILÓN, S., BORGE-HOLTHOEFER, J. y MORENO, Y. (2013). “Broadcasters and Hidden Influentials in Online Protest Diffusion”. American Behavioral Scientist, 57(7), 943-965.
  • GUALDA, E. y REBOLLO, C. (2020). “Big data y Twitter para el estudio de procesos migratorios: Métodos, técnicas de investigación y software”. Empiria: Revista de Metodología de Ciencias Sociales (46), 147-177.
  • GUTIÉRREZ, M., PANDO, M.J. y CONGOSTO, M. (2020). “New Approaches to the Propagation of the Antifeminist backlash on Twitter”. Investigaciones Feministas, 11(2), 221-237.
  • GRIMMER, J., & STEWART, B. M. (2013). “Text as data: The promise and pitfalls of automatic content analysis methods for political texts”. Political analysis, 21(3), 267-297.
  • JACKSON, S. J., BAILEY, M., & WELLES, B.F. (2018). “#GirlsLikeUs: Trans advocacy and community building online”. New Media & Society, 20(5), 1868-188
  • JACKSON, S. J., BAILEY M. y WELLES, B. F. (2020). “#HashtagActivism: Networks of Race and Gender Justice”. Cambridge: The MIT Press.
  • JACOMY, M., VENTURINI, T., HEYMANN, S., & BASTIAN, M. (2014). “ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software”. PLoS ONE 9(6): e98679.
  • JENSEN, M. y BANG, H. (2013). “Occupy Wall Street: A New Political Form of Movement and Community?”, Journal of Information, Technology and Politics, 10(4), 444-461.
  • JOCKERS, M.L. (2015). “Syuzhet: Extract Sentiment and Plot Arcs from Text”, disponible en https://github.com/mjockers/syuzhet, accedido el 10/12/2020.
  • JOST, J. et al. (2018): “How Social Media Facilitates Political Protest: Information, Motivation, and Social Networks”. Political Psychology, 39(1), 85-118.
  • KEARNEY, M.W. (2019). “rtweet: Collecting and Analyzing Twitter Data.” Journal of Open Source Software, 4(42), 1829. DOI: 10.21105/joss.01829, R package version 0.7.0.
  • KUNST, J. R., BAILEY, A., PRENDERGAST, C., & GUNDERSEN, A. (2019). “Sexism, rape myths and feminist identification explain gender differences in attitudes toward the# metoo social media campaign in two countries”. Media Psychology, 22(5), 818-843.
  • LARRONDO, A., MORALES-I-GRAS, J., & ORBEGOZO-TERRADILLOS, J. (2019). “Feminist hashtag activism in Spain: Measuring the degree of politicisation of online discourse on #YoSíTeCreo, #HermanaYoSíTeCreo, #Cuéntalo y #NoEstásSola”. Communication & Society, 207-221.
  • LARSSON, A. y MOE, H. (2014). “Triumph of the Underdogs? Comparing Twitter Use by Political Actors during two Norwegian Election Campaigns”. Sage Open, 4(4), 1-13.
  • MOLINA, M. y GARIP, F. (2019). “Machine Learning for Sociology”. Annual Review of Sociology, 45, 27-45.
  • NAVARRO, C. y COROMINA, Ò. (2020). “Discussion and Mediation of Social Outrage on Twitter: The Reaction to the Judicial Sentence of «La Manada»”. Comunicación y Sociedad, 33(1), 93-106.
  • PÉREZ-DASILVA, J., MESO, K. y MENDIGUREN, T. (2020). “Fake news y coronavirus: detección de los principales actores y tendencias a través del análisis de las conversaciones en Twitter”. El Profesional de la Información, 29(3), e290308.
  • PÉREZ-MARTÍNEZ, V.M. y RODRÍGUEZ-GONZÁLEZ, MD (2017). “Movilización y participación en Twitter. Estudio de caso del hashtag #SuperTuesday en las primarias presidenciales de EEUU 2016”. Revista Latina de Comunicación Social, 72, 679 a 703.
  • PORTER, M.A.; ONNELA, J.P. Y MUCHA, P.J. (2009). "Communities in Networks". Notices of the American Mathematical Society. 56: 1082–1097.
  • RODINO-COLOCINO, M. (2018). “Metoo, #MeToo: Countering Cruelty with Empathy”, Communication and Critical/Cultural Studies, 15(1), 96-100.
  • RUIZ, V. y VALLÈS, M.A. (2020). “#Cuéntalo: the Path Between Archival Activism and the Social Archive (s)”. Archives and Manuscripts, 1-20.
  • SHAO, C. et al. (2018). “The Spread of Low-Credibility Content by Social Bots”. Nature Communications, 9(1), 1-41.
  • SHULMAN, S. (2011). “DiscoverText: Software Training to Unlock the Power of Text”, Conference: Proceedings of the 12th Annual International Conference on Digital Government Research, DGO. College Park, MD, USA.
  • THEOCHARIS, Y., LOWE, W., VAN DETH, J. W., & GARCÍA-ALBACETE, G. (2015). “Using Twitter to mobilize protest action: online mobilization patterns and action repertoires in the Occupy Wall Street, Indignados, and Aganaktismenoi movements”. Information, Communication & Society, 18(2), 202-220.
  • THOMAS, W. y ZNANIECKI, F. (2004: 1918). El campesino polaco en Europa y en América, Madrid, Centro de Investigaciones Sociológicas (CIS).
  • WANG, C. y WANG, P. (2013). “Discussing Occupy Wall Street on Twitter: Longitudinal Network Analysis of Equality, Emotion, and Stability of Public Discusión”. Cyberpsychology, Behavior and Social Networking, 16(9), 679-685.
  • XIONG, Y., CHO, M., & BOATWRIGHT, B. (2019). “Hashtag activism and message frames among social movement organizations: Semantic network analysis and thematic analysis of Twitter during the# MeToo movement”. Public relations review, 45(1), 10-23.