Prospective primary teachers’ views on the nature of science

  1. Rafael Amador-Rodríguez 1
  2. Agustín Adúriz-Bravo 2
  3. Jorge Alberto Valencia-Cobo 1
  4. Roberto Reinoso-Tapia 3
  5. Jaime Delgado-Iglesias 3
  1. 1 Universidad del Norte (Colombia)
  2. 2 University of Buenos Aires (Argentina)
  3. 3 Universidad de Valladolid
    info

    Universidad de Valladolid

    Valladolid, España

    ROR https://ror.org/01fvbaw18

Revista:
JOTSE

ISSN: 2013-6374

Año de publicación: 2021

Volumen: 11

Número: 2

Páginas: 403-418

Tipo: Artículo

DOI: 10.3926/JOTSE.1271 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: JOTSE

Resumen

This article presents the results of a piece of research that analyzed the views on the nature of science (NOS) among student teachers enrolled in programs of Primary Education at two public universities in Spain. Previous studies have reported that science teachers maintain ‘eclectic’ epistemological perspectives on science; in this article, we test if such a hypothesis holds when teachers’ NOS ideas are ‘anchored’ in specific periods and topics of the philosophy of science. We studied 114 prospective teachers attending an undergraduate teaching course with emphasis on the natural sciences at the Universities of Burgos and Valladolid in the period of 2017-18. A Likert-scale questionnaire with 50 items was applied to determine trends in those teachers’ epistemological views on science. The results showed that teachers’ views are mostly correlated with the philosophical period of Logical Positivism/Received View, and to some extent to the period of Recent and Contemporary Accounts. Regarding the classical epistemological topics of correspondence, methodologies, intervention, evolution and representation, teachers’ views could be related to the period of Logical Positivism/Received View and Critical Rationalism, but also to the New Philosophy of Science. The main conclusion of this study is that teachers’ expressed views on NOS are epistemologically eclectic to a much smaller degree when examined with more detail concerning specific periods and topics of the philosophy of science.

Información de financiación

Funding The authors received no financial support for the research, authorship, and/or publication of this article.

Financiadores

Referencias bibliográficas

  • Abd-El-Khalick, F.S., & Lederman, N.G. (2000). Improving science teachers’ conceptions of the nature of science: A critical review of the literature. International Journal of Science Education, 22, 665-701. https://doi.org/10.1080/09500690050044044
  • Adúriz-Bravo, A. (2013). A ‘Semantic’view of scientific models for science education. Science & Education, 22 (7), 1593-1611. https://doi.org/10.1007/s11191-011-9431-7
  • Adúriz-Bravo, A. (2014). Teaching the Nature of Science with Scientific Narratives. Interchange, 45, 167-184. https://doi.org/10.1007/s10780-015-9229-7
  • Adúriz-Bravo, A & Izquierdo-Aymerich, M. (2009). Un modelo de modelo científico para la enseñanza de las ciencias naturales. Revista electrónica de investigación en educación en ciencias, 4(3), 40-49.
  • Akerson, V.L., & Donnelly, L.A. (2008). Relationships among learner characteristics and preservice elementary teachers’ views of nature of science. Journal of Elementary Science Education, 20(1), 45-58. https://doi.org/10.1007/BF03174702
  • Amador-Rodríguez, R.Y. (2018). La Naturaleza de la Ciencia Representada en Libros de Texto de Química Latinoamericanos. Tesis doctoral. Universidad Nacional del Comahue, Neuquén – Argentina.
  • Amador-Rodríguez, R.Y., & Adúriz-Bravo, A. (2018). Consensus and Dissent Around the Concept of Nature of Science in the Ibero-American Community of Didactics of Science. In Teaching Science with Context (31-47). Cham: Springer. https://doi.org/10.1007/978-3-319-74036-2_3
  • Bachelard, G. (1940) La philosophie du “non”: Essai d’une philosophie du nouvel esprit scientifique. Avantpropos, Paris: PUF.
  • Bisquerra, R. (2009). Metodología de la investigación educativa. Madrid, España: La muralla.
  • Bryman, A., & Cramer, D. (2009). Quantitative data analysis with SPSS 14, 15 & 16: A guide for social scientists. Routledge/Taylor & Francis Group.
  • Buaraphan, K. (2012). Embedding Nature of Science in Teaching About Astronomy and Space. Journal of Science Education and Technology, 21, 353-369. https://doi.org/10.1007/s10956-011-9329-9
  • Cleminson, A. (1990). Establishing an epistemological base for Science teaching in the light of contemporary notions of the nature of Science and of how children learn Science. Journal of Research in Science Teaching, 27(5), 429-445. https://doi.org/10.1002/tea.3660270504
  • Colagrande, E.A., Martorano, S.A.A., & Arroio, A. (2016). Assessment on How Pre-Service Science Teachers View the Nature of Science. Journal of Turkish Science Education, 13(4),293-307 http://www.tused.org
  • Dogan, N., & Abd-El-Khalick, F. (2008). Turkish grade 10 students’ and science teachers’ conceptions of nature of science: A national study. Journal of Research in Science Teaching, 45(10), 1083-1112. https://doi.org/10.1002/tea.20243
  • Flick, L. & Lederman, N.G. (Eds.) (2004). Scientific inquiry and nature of science: implications for teaching, learning, and teacher education. Dordrecht, The Netherlands: Kluwer Academic Publishers.
  • Gallagher, J.J. (1991). Perspective and practicing secondary school science teachers’ knowledge and beliefs about the philosophy of science. Science Education, 75, 121-134. https://doi.org/10.1002/sce.3730750111
  • Hodson, D. (2009). Teaching and learning about science: Language, theories, methods, history, traditions and values. Brill Sense. https://doi.org/10.1163/9789460910531
  • Irzik, G., & Nola, R. (2011). A family resemblance approach to the nature of science for science education. Science & Education, 20(7-8), 591-607. https://doi.org/10.1007/s11191-010-9293-4
  • Izquierdo-Aymerich, M., & Adúriz-Bravo, A. (2003). Epistemological foundations of school science. Science & Education, 12(1), 27-43. https://doi.org/10.1023/A:1022698205904
  • Jun-Young, O.H., & Lederman, N.G. (2018). Using an Explicit NOS Flow Map in Instruction of Nature of Science Based on the Science of Philosophy. Journal of Turkish Science Education, 15(3), 64-90. http://www.tused.org
  • Klopfer, L.E. (1969). The teaching of science and the history of science. Journal of Research for Science Teaching, 6, 87-95. https://doi.org/10.1002/tea.3660060116
  • Lederman, N.G. (1999). Teachers’ understanding of the nature of science and classroom practice: Factors that facilitate or impede the relationship. Journal of Research in Science Teaching, 36(8), 916-929. https://doi.org/10.1002/(SICI)1098-2736(199910)36:8<916::AID-TEA2>3.0.CO;2-A
  • Leinonen, R., Haaranen, M., Kesonen, M., Koponen, M., Hirvonen, P.E., & Asikainen, M.A. (2020). Finnish graduated physics teachers’ views about their teacher education program: The disparity between the needs and delivery. Journal of Technology and Science Education, 10(1), 101-116. https://doi.org/10.3926/jotse.820
  • Lin, H.S., & Chen, C.C. (2002). Promoting preservice chemistry teachers’ understanding about the nature of science through history. Journal of Research in Science Teaching, 39(9), 773-792. https://doi.org/10.1002/tea.10045
  • Lloret-Segura, S., Ferreres-Traver, A., Hernández-Baeza, A., & Tomás-Marco, I. (2014). El Análisis Factorial Exploratorio de los Ítems: una guía práctica, revisada y actualizada. Anales de Psicología, 30(3), 1151-1169. https://dx.doi.org/10.6018/analesps.30.3.199361
  • Martínez, C.P., & González, C.U. (2014). Concepciones del profesorado universitario acerca de la ciencia y su aprendizaje y cómo abordan la promoción de competencias científicas en la formación de futuros profesores de Biología. Enseñanza de las ciencias, 32 (1), 51-81. http://dx.doi.org/10.5565/rev/ensciencias.852
  • Matthews, M.R. (2012). Changing the focus: From nature of science (NOS) to features of science (FOS). In Advances in nature of science research (3-26). Springer Netherlands. https://doi.org/10.1007/978-94-007-2457-0_1
  • McComas, W.F. (1996). Ten myths of science: Reexamining what we think we know about the nature of science. School Science and Mathematics, 96, 10-16. https://doi.org/10.1111/j.1949-8594.1996.tb10205.x
  • McComas, W.F., Almazroa, H. & Clough, M.P. (1998). The Nature of Science in Science Education: An Introduction. Science & Education, 7, 511-532. https://doi.org/10.1023/A:1008642510402
  • Mellado, V. (1997). Preservice teachers ‘classroom practice and their conceptions of the nature of science. Science & Education, 6(4), 331-354. https://doi.org/10.1023/A:1008674102380
  • Mellado, V. & Carracedo, D. (1993). Contribuciones de la filosofía de la ciencia a la didáctica de las ciencias. Enseñanza de las ciencias, 11(3), 331-339. https://doi.org/10.5565/rev/ensciencias.4514
  • Merenda, P.F. (1997). A guide to the proper use of factor analysis in the conduct and reporting of research: Pitfalls to avoid. Measurement and Evaluation in counseling and Development, 30(3), 156-164. https://doi.org/10.1080/07481756.1997.12068936
  • Montoya, O.M. (2007). Aplicación del análisis factorial a la investigación de mercados. Caso de estudio. Scientia et technica, 1(35). http://dx.doi.org/10.22517/23447214.5443
  • Morales-Vallejo, P. (2013). El análisis factorial en la construcción e interpretación de tests, escalas y cuestionarios. Madrid, España: Universidad Pontificia Comillas.
  • Morrison, J., Raab, F., & Ingram, D. (2009). Factors influencing elementary and secondary teachers’ views on the nature of science. Journal of Research in Science Teaching, 46(4), 384-403. https://doi.org/10.1002/tea.20252
  • National Science Teachers Association (1982). Science-technology-society: Science education for the 1980s. (An NSTA position statement). Washington, DC.
  • Nussbaum, J. (1983). Classroom conceptual change: The lessons to be learned from the History of Science. In Helm, H., & Novak, J. (Eds.), Misconceptions in Science and Mathematics (272-281). Ithaca: Cornell University.
  • Osborne, J.W. (2003). Effect sizes and the disattenuation of correlation and regression coefficients: Lessons from educational psychology. Practical Assessment, Research &Evaluation, 8(11), 1-5. https://doi.org/10.7275/0k9h-tq64
  • Porlán, P., & Martín del Pozo, R (2002). Spanish Teachers’ Epistemological and Scientific Conceptions: Implications for teacher education1. European Journal of Teacher Education, 25(2-3), 151-169. https://doi.org/10.1080/0261976022000035683
  • Prima, E.C., Utari, S., Chandra, D.T., Hasanah, L., & Rusdiana, D. (2018). Heat and temperature experiment designs to support students’ conception on nature of science. Journal of Technology and Science Education, 8(4), 453-472. https://doi.org/10.3926/jotse.419
  • Ryan, A.G., & Aikenhead, G.S. (1992). Students’ preconceptions about the epistemology of science. Science Education, 76, 559-580. https://doi.org/10.1002/sce.3730760602
  • Sevim, S., & Pekbay, C.A. (2012). A study toward teaching the nature of science to preservice teachers. Journal of Turkish Science Education, 9(3), 207-227. http://www.tused.org
  • Torres, J., Moutinho, S., Almeida, A., & Vasconcelos, C. (2013). Portuguese science teachers’ views about nature of science and scientific models. Enseñanza de las ciencias, Extra, 3541-3546.
  • Tsai, C.C., & Liu, S.Y. (2005). Developing a multi-dimensional instrument for assessing students’ epistemological views toward science. International Journal of Science Education, 27, 1621-1638. https://doi.org/10.1080/09500690500206432
  • Ucar, S. (2012). How Do Pre-Service Science Teachers’ Views on Science, Scientists, and Science Teaching Change Over Time in a Science Teacher Training Program? Journal of Science Education and Technology, 21, 255-266. https://doi.org/10.1007/s10956-011-9311-6