Soil and grapevine leaf quality in organic vineyards of different ages in DO Rioja-Alavesa, northern Spain

  1. Xavier Úbeda 1
  2. Marcos Francos 2
  3. Pablo Eguzkiza 3
  4. Estevao B. Stefanuto 4
  1. 1 Universitat de Barcelona
    info

    Universitat de Barcelona

    Barcelona, España

    ROR https://ror.org/021018s57

  2. 2 Universidad de Tarapacá, Chile
  3. 3 Bodega Lanzaga, Alava
  4. 4 Universidade Estadual Paulista
    info

    Universidade Estadual Paulista

    São Paulo, Brasil

    ROR https://ror.org/00987cb86

Revista:
Spanish Journal of Soil Science: SJSS

ISSN: 2253-6574

Año de publicación: 2021

Volumen: 11

Número: 1

Páginas: 6-21

Tipo: Artículo

DOI: 10.3232/SJSS.2021.V11.N1.02 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: Spanish Journal of Soil Science: SJSS

Resumen

Se analizó el suelo y el follaje de tres parcelas cultivadas orgánicamente en viñedos de la Rioja Alavesa, concretamente en Lanciego (Álava, España). El objetivo de este estudio fue determinar las diferencias de calidad del suelo y de la vid entre viñedos de diferentes edades. Se tomaron muestras de los primeros 20 centímetros del suelo y se recogieron las hojas durante el período vegetativo. Los resultados muestran que la calidad del suelo en las tres parcelas era óptima y no difería de la de los suelos de las parcelas cultivadas tradicionalmente. El único elemento que se encontró en menor concentración en las tres parcelas y en las hojas fue el hierro. El cultivo orgánico de viñedos es un modo de cultivo viable y podría ayudar a reducir las emisiones de gases de efecto invernadero y la contaminación por pesticidas y fertilizantes

Referencias bibliográficas

  • Adriano DC. 1997. Biogeochemistry of trace metals. Georgia: Science Reviews. 432 p.
  • Al-Gburi HFA, Al-Tawash BS, Al-Lafta HS. 2017. Environmental assessment of Al-Hammar Marsh, Southern Iraq. Helyon 3(2):e00256. https://doi.org/10.1016/j.heliyon.2017.e00256.
  • Alagna V, Di Prima S, Rodrigo-Comino J, Iovino M, Pirastru M, Keesstra SD, Novara A, Cerdà A. 2018. The impact of the age of vines on soil hydraulic conductivity in vineyards in eastern Spain. Water 10(1):14.
  • Alloway BJ. 1995. Heavy metals in soils. New York: John Wiley and Sons, Inc. 368 p.
  • Anderson K. 2001. The globalization (and regionalization) of wine. CIES/University of Adelaide discussion paper 125. Adelaide.
  • Baiamonte G, Minacapilli M, Novara A, Gristina L. 2019. Time scale effects and interactions of rainfall erosivity and cover management factors on vineyard soil loss erosion in the semi-arid area of southern Sicily. Water 11(5):978.
  • Barrios A. 1994. Mapa de Suelos de La Rioja Alavesa E: 1/50000. Vitoria-Gasteiz, España: Departamento de Agricultura de la Diputación Foral de Álava. Servicio de Estudios y Relaciones Comunitarias.
  • Battistelli N, Perpetuini G, Perla C, Arfelli G, Zulli C, Rossetti AP, Tofalo R. 2020. Characterization of natural Oenococcus oeni strains for Montepulciano d’Abruzzo organic wine production. European Food Research and Technology 246:1031-1039.
  • Biddoccu M, Ferraris S, Pitacco A, Cavallo E. 2017. Temporal variability of soil management effects on soil hydrological properties, runoff and erosion at the field scale in a hillslope vineyard, North-West Italy. Soil and Tillage Research 165:46-58.
  • Boix-Fayos C, Martínez-Mena M, Arnau-Rosalén E, Calvo-Cases A, Castillo V, Albaladejo J. 2006. Measuring soil erosion by field plots: Understanding the sources of variation. Earth-Science Reviews 78(3-4):267-285.
  • Burns KN, Bokulich NA, Cantu D, Greenhut RF, Kluepfel DA, O'Geen AT, Strauss SL, Steenwerth KL. 2016. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by vineyard management. Soil Biology and Biochemistry 103:337-348.
  • Carvalho A, Leal F, Matos M, Lima-Brito J. 2018. Effects of heat stress in the leaf mitotic cell cycle and chromosomes of four wine-producing grapevine varieties. Protoplasma 255(6):1725-1740.
  • Chou MY, Heuvel JV, Bell TH, Panke-Buisse K, Kao-Kniffin J. 2018. Vineyard under-vine floor management alters soil microbial composition, while the fruit microbiome shows no corresponding shifts. Scientific Reports 8(1):11039.
  • Cibirain F, Sagüés A. 1994. Clorosis férrica de la vid. Navarra Agraria 5-6:19-23.
  • Cobertera E. 1993. Edafología Aplicada. Ediciones Cátedra. 328 p.
  • Colman T, Päster P. 2009. Red, white, and ‘green’: the cost of greenhouse gas emissions in the global wine trade. Journal of Wine Research 20(1):15-26.
  • Comino JR, Bogunovic I, Mohajerani H, Pereira P, Cerdà A, Ruiz Sinoga JD, Ries JB. 2017. The impact of vineyard abandonment on soil properties and hydrological processes. Vadose Zone Journal 16(12).
  • Consejo Regulador DO Rioja. 2009. Cosecha 2009. https://www.riojawine.com/el-rioja/anadas-y-cosechas/cosecha-2009/. Consulted 29/09/2020.
  • Corporate Social Responsability (CSR). 2019. Memoria GRI. https://www.almacarraovejas.com/wp-content/uploads/2020/10/20201006_memoria-GRI_ENG_red.pdf. Consulted 27/08/2020.
  • Costantini EAC, Agnelli AE, Fabiani A, Gagnarli E, Mocali S, Priori S, Simoni S, Valboa G. 2015. Short-term recovery of soil physical, chemical, micro-and mesobiological functions in a new vineyard under organic farming. Soil 1:443-457.
  • Coulouma G, Prevot L, Lagacherie P. 2020. Carbon isotope discrimination as a surrogate for soil available water capacity in rainfed areas: A study in the Languedoc vineyard plain. Geoderma 362:114121.
  • Cozzolino D, Cynkar W, Shah N, Dambergs RG, Smith P. 2009. Rapid methods to measure soil composition and leaf water potential in the vineyard. Australian and New Zealand Grapegrower and Winemaker 545:60-63.
  • Crescimanno M, Ficani GB, Guccione G. 2002. The production and marketing of organic wine in Sicily. British Food Journal 104:274-286.
  • Daane KM, Williams LE. 2003. Manipulating vineyard irrigation amounts to reduce insect pest damage. Ecological Applications 13(6):1650-1666.
  • Del Frari G, Gobbi A, Aggerbeck M, Oliveira H, Hestbjerg Hansen LH, Boavida Ferreira RB. 2019. Characterization of the wood mycobiome of Vitis vinifera in a vineyard affected by esca. Spatial distribution of fungal communities and their putative relation with leaf symptoms. Frontiers in Plant Science 10:910.
  • Di Gennaro SF, Battiston E, Di Marco S, Facini O, Matese A, Nocentini M, Mugnai L. 2016. Unmanned Aerial Vehicle (UAV)-based remote sensing to monitor grapevine leaf stripe disease within a vineyard affected by esca complex. Phytopathologia Mediterranea 55(2):262-275.
  • Di Giacinto S, Friedel M, Poll C, Döring J, Kunz R, Kauer R. 2020. Vineyard management system affects soil microbiological properties. OENO One 54:131-143.
  • Díaz I, Barrón V, del Campillo MC, Torrent J. 2013. Prevención y corrección de la clorosis férrica en el viñedo. Vida Rural 6:42-46.
  • Edwards CA, Lofty JR. 1972. Biology of earthworms. London: Chapman and Hall.
  • Galati A, Gristina L, Crescimanno M, Barone E, Novara A. 2015. Towards more efficient incentives for agri‐environment measures in degraded and eroded vineyards. Land Degradation & Development 26(6):557-564.
  • García-Escudero E, Martín I. 2019. Apuntes sobre fertilización del viñedo: tipos de abonados, necesidades nutricionales de la vid según su ciclo y recomendación de enmiendas. Cuaderno de Campo (62):32-39.
  • Gaspar LF. 2010. Fertilización del cultivo de vid. Agro Estrategias Consultores 11:4-5.
  • Gaudin R, Roux S, Tisseyre B. 2017. Linking the transpirable soil water content of a vineyard to predawn leaf water potential measurements. Agricultural Water Management 182:13-23.
  • Giagnoni L, Maienza A, Baronti S, Vaccari FP, Genesio L, Taiti C, Martellini T, Scodellini R, Cincinelli A, Costa C, Mancuso S, Renella G. 2019. Long-term soil biological fertility, volatile organic compounds and chemical properties in a vineyard soil after biochar amendment. Geoderma 344:127-136.
  • González-Chang M, Boyer S, Creasy GL, Lefort MC, Wratten SD. 2017. Mussel shell mulch can increase vineyard sustainability by changing scarab pest behaviour. Agronomy for Sustainable Development 37(5):42.
  • Gras AM. 1995. Bases de la nutrició mineral en la vinya. Universitat de Barcelona 17:15-17.
  • Heiri O, Lotter AF, Lemcke G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 5:101-110.
  • Hibbert D, Horne PA. 2001. IPM: the influence of pest and disease sprays on vineyard pests. Australian and New Zealand grapegrower and winemaker 451:26-29.
  • Human U. 2017. The sustainability of organic wine production: Production. FarmBiz 3(7):18-19.
  • INTA. 2011. Instituto Nacional de Tecnología Agropecuaria (https://www.argentina.gob.ar/inta). Consultado el 01/5/2020.
  • Johnson LF, Roczen DE, Youkhana SK, Nemani RR, Bosch DF. 2003. Mapping vineyard leaf area with multispectral satellite imagery. Computers and electronics in agriculture 38(1):33-44.
  • Kishi Y, Kanehara K. 2003. Effects of canopy area, amount of substrate soil and tree age on vine growth, fruit quality and yield in controlling system of 'Kyoho' grape [Vitis spp.] rhizosphere drip irrigation. Bulletin of the Tochigi Prefectural Agricultural Experiment Station (Japan) 52:55-61.
  • Knudsen D, Petersen GA, Pratt PF. 1982. Lithium, sodium and potassium. In: Dinauer RC, editor. Methods of soil analysis. Part 2. Chemical and microbiological properties. Madison, Wisconsin, USA: ASA, SSSA. p. 225-246.
  • Li H, Hui ZM, Zhang ZW, Huang Y, Li EH. 2004. Effect of green covering on soil fertility and grape leaf nutrient content of vineyard. Transactions of the Chinese Society of Agricultural Engineering 20(1):116-119.
  • López-Piñeiro A, Muñoz A, Zamora E, Ramírez M. 2013. Influence of the management regime and phenological state of the vines on the physicochemical properties and the seasonal fluctuations of the microorganisms in a vineyard soil under semi-arid conditions. Soil and Tillage Research 126:119-126.
  • Mackenzie DE, Christy AG. 2005. The role of soil chemistry in wine grape quality and sustainable soil management in vineyards. Water Science and Thechnology 51(1):27-37.
  • Mackie KA, Müller T, Zikeli S, Kandeler E. 2013. Long-term copper application in an organic vineyard modifies spatial distribution of soil micro-organisms. Soil Biology and Biochemistry 65:245-253.
  • Marín A, Alonso-Martirena JI, Andrades M, Pizarro C. 2000. Contenido de metales pesados en suelos de viñedo de la D.O.Ca. Rioja. Edafología 7-3:351-357.
  • Massa N, Bona E, Novello G, Todeschini V, Boatti L, Mignone F, Gamalero E, Lingua G, Berta G, Cesaro P. 2020. AMF communities associated to Vitis vinifera in an Italian vineyard subjected to integrated pest management at two different phenological stages. Scientific Reports 10(1):1-12.
  • McGovern P, Jalabadze M, Batiuk S, Callahan MP, Smith KE, Hall GR, Failla O. 2017. Early neolithic wine of Georgia in the South Caucasus. Proceedings of the National Academy of Sciences 114(48):E10309-E10318.
  • Meaza G. 1997. Geografía de Euskal Herria: Suelos, Vegetación y Fauna. Lasarte-Oria: Etor-Ostoa.
  • Ministerio de Agricultura, Alimentación y Medio Ambiente 2011. Agricultura, Alimentación y Medio Ambiente en España 2011. https://www.mapa.gob.es/es/ministerio/servicios/publicaciones/memoria2011_cap.aspx. Consulted 03/10/2020.
  • Morelli R, Zanzotti R, Bertoldi D, Mescalchin E. 2019. Nutrients and heavy metals in a vineyard soil under organic, biodynamic and conventional management. In: 21st GiESCO International Meeting: a multidisciplinary vision towards sustainable viticulture. p. 883 GR.
  • Napoli M, Dalla Marta A, Zanchi CA, Orlandini S. 2017. Assessment of soil and nutrient losses by runoff under different soil management practices in an Italian hilly vineyard. Soil and Tillage Research 168:71-80.
  • Niccolucci V, Galli A, Kitzes J, Pulselli RM, Borsa S, Marchettini N. 2008. Ecological footprint analysis applied to the production of two Italian wines. Agriculture, Ecosysistems & Environment 128(3):162-166.
  • Novara A, Stallone G, Cerdà A, Gristina L. 2019. The effect of shallow tillage on soil erosion in a semi-arid vineyard. Agronomy 9(5):257.
  • Okur N, Kayikcioglu HH, Ates F, Yagmur B. 2016. A comparison of soil quality and yield parameters under organic and conventional vineyard systems in Mediterranean conditions (West Turkey). Biological Agriculture and Horticulture 32(2):73-84.
  • Olego MA, Reluy FV, Martínez MJQ, De Paz JM, Jimeno JEG. 2016. Assessing the effects of soil liming with dolomitic limestone and sugar foam on soil acidity, leaf nutrient contents, grape yield and must quality in a Mediterranean vineyard. Spanish Journal of Agricultural Research 14(2):21.
  • Olsen SR, Cole CV, Frank SW, Dean LA. 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. USDA Circular No. 939. Washington, DC: US Government Printing Office.
  • Palliotti A, Gatti M, Poni S. 2011. Early leaf removal to improve vineyard efficiency: gas exchange, source-to-sink balance, and reserve storage responses. American Journal of Enology and Viticulture 62(2):219-228.
  • Pedneault K, Provost C. 2016. Fungus resistant grape varieties as a suitable alternative for organic wine production: Benefits, limits, and challenges. Scientia Horticulturae 208:57-77.
  • Peregrina F, López D, Zaballa O, Villar MT, González G, García-Escudero E. 2010. Calidad de los suelos de viñedo en la Denominación de Origen Rioja. Revista de Ciencias Agrarias 33:338-345.
  • Pereira P, Úbeda X, Martín D. 2012. Fire severity effects on ash chemical composition and water-extractable elements. Geoderma 191:105-114.
  • Pijl A, Barneveld P, Mauri L, Borsato E, Grigolato S, Tarolli P. 2019. Impact of mechanisation on soil loss in terraced vineyard landscapes. Cuadernos de Investigación Geográfica 45(1):287-308.
  • Pintać D, Četojević-Simin D, Berežni S, Orčić D, Mimica-Dukić N, Lesjak M. 2019. Investigation of the chemical composition and biological activity of edible grapevine (Vitis vinifera L.) leaf varieties. Food Chemistry 286:686-695.
  • Point E, Tyedmers P, Naugler C. 2012. Life cycle environmental impacts of wine production and consumption in Nova Scotia, Canada. Journal of Clean Production 27:11-20.
  • Preston W, do Nascimento A, Williams C, Agra Bezerra da Silva YJ, Silva DJ, Alves Ferreira H. 2017. Soil fertility changes in vineyards of a semiarid region in Brazil. Journal of Soil Science and Plant Nutrition 17(3):672-685.
  • Prosdocimi M, Tarolli P, Cerdà A. 2016. Mulching practices for reducing soil water erosion: A review. Earth-Science Reviews 161:191-203.
  • Quiroga MJ, Olego MA, Sánchez-García M, Esteban Medina J, Visconti F, Rubio Coque JJ, Garzón Jimeno JE. 2017. Effects of liming on soil properties, leaf tissue cation composition and grape yield in a moderately acid vineyard soil. Influence on must and wine quality. Oeno One 51(4):343-362.
  • Ramírez CD. 2008. Wine quality, wine prices, and the weather: Is Napa “different”? Journal of Wine Economics 3(2):114-131.
  • Ramírez M, López-Piñeiro A, Velázquez R, Muñoz A, Regodón JA. 2020. Analysing the vineyard soil as a natural reservoir for wine yeasts. Food Research International 129:108845.
  • Reeve JR, Carpenter-Boggs L, Reganold JP, York AL, McGourthy G, McCloskey LP. 2005. Soil and winegrape quality in biodynamically and organically managed vineyards. American Journal of Enology and Viticulture 56(4):367-376.
  • Remaud H, Mueller S, Chvyl P, Lockshin L. 2008. Do Australian wine consumers value organic wine? Doctoral dissertation. AWBR Academy of Wine Business Research.
  • Rey-Caramés C, Diago MP, Martín MP, Lobo A, Tardaguila J. 2015. Using RPAS multi-spectral imagery to characterise vigour, leaf development, yield components and berry composition variability within a vineyard. Remote Sensing 7(11):14458-14481.
  • Rodrigo-Comino J, Brevik EC, Cerdà A. 2018. The age of vines as a controlling factor of soil erosion processes in Mediterranean vineyards. Science of the Total Environment 616:1163-1173.
  • Rodrigo-Comino J, Brings C, Iserloh T, Casper MC, Seeger M, Senciales JM, Ries JB. 2017. Temporal changes in soil water erosion on sloping vineyards in the Ruwer-Mosel Valley. The impact of age and plantation works in young and old vines. Journal of Hydrology and Hydromechanics 65(4):402-409.
  • Rodríguez-Salgado I, Pérez-Rodríguez P, Gómez-Armesto A, Díaz-Raviña M, Nóvoa-Muñoz JC, Arias-Estévez M, Fernández-Calviño D. 2017. Modification of chemical properties, Cu fractionation and enzymatic activities in an acid vineyard soil amended with winery wastes: A field study. Journal of Environmental Management 202:167-177.
  • Rugani B, Vázquez-Rowe I, Benedetto G, Bennetto E. 2013. A comprehensive review of carbon footprint analysis as an extended environmental indicator in the wine sector. Journal of Cleaner Production 54:61-77.
  • Schmitt DE, Comin JJ, Ceretta CA, Gatiboni LC, Tiecher T, Lorensini F, Brunetto G. 2013. Accumulation of phosphorus fractions and contamination potential in vineyard soils in the southern region of the state of Santa Catarina, Brazil. Revista Brasileira de Ciência do Solo 37(5):1256-1266.
  • Scotto LM, Minot JC, Voisin R, Castaing LRM, Fabre A. 1988. Relationship between soil type, previous crop and age of plantation on the composition and the distribution of the nematofauna associated with vineyards of the south-east of France. Acta Oecologica, Oecologia Applicata 9(2).
  • Šibul FS, Orčić DZ, Svirčev E, Mimica-Dukić NM. 2016. Optimization of extraction conditions for secondary biomolecules from various plant species. Hemijska industrija 70(4):473-483.
  • Smith O. 1955. Western grape leaf skeletonizer: 1954 biological control program indicates parasitism plus virus disease registering important reduction of vineyard pest. Hilgardia 9(8):7-7.
  • Stafford E, Jensen F. 1957. Grape leaf folder: Field tests compared effectiveness of insecticides in control of vineyard pest. California Agriculture 11(6):4-15.
  • Stamatiadis S, Liopa-Tsakalidi A, Maniati LM, Karageorgou P, Natioti E. 1997. A comparative study of soil quality in two vineyards differing in soil management practices. Methods for Assessing Soil Quality 49:381-392.
  • Stojanova MT, Popova SI, Popov SI, Vukosavljevic V. 2011. Soil fertility affect on chemical leaf composition on two types of viticulture's in Gevgelija vineyard conditions. In: Proceedings of the 46th Croatian and 6th International Symposium on Agriculture; 2011 Feb 14-18; University of Zagreb, Faculty of Agriculture, Opatija, Croatia; p. 988-990.
  • Stolz H, Schmid O. 2008. Consumer attitudes and expectations of organic wine. In: Proceedings of the 16th IFOAM Organic World Congress; 2008 Jun 16-20; Modena, Italy; accessed 2020 Oct 29.
  • Soil Survey Staff. 2010. Keys to soil taxonomy. 12th edition. Washington, DC: United States Department of Agriculture, Soil Conservation Service.
  • Tarolli P, Preti F, Romano N. 2014. Terraced landscapes: From an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene 6:10-25.
  • Tarolli P, Sofia G, Calligaro S, Prosdocimi M, Preti F, Dalla Fontana G. 2015. Vineyards in terraced landscapes: new opportunities from lidar data. Land Degradation and Development 26(1):92-102.
  • Torres-Sánchez J, Marín D, De Castro AI, Oria I, Jiménez-Brenes FM, Miranda C, López-Granados F. 2019. Assessment of vineyard trimming and leaf removal using UAV photogrammetry. In: Precision agriculture’19. Wageningen Academic Publishers. p. e0130479.
  • Torresi S, Frangipane MT, Anelli G. 2011. Biotechnologies in sparkling wine production. Interesting approaches for quality improvement: A review. Food Chemistry 129(3):1232-1241.
  • Vadakattu GV, Bramley RG, Greenfield P, Yu J, Herderich M. 2019. Vineyard soil microbiome composition related to rotundone concentration in Australian cool climate ‘peppery’Shiraz grapes. Frontiers in Microbiology 10:1607.
  • Veiga MD, Feldberg NP, Nava G, Bettoni JC. 2017. Winter cover crops affecting physical and chemical soil attributes in a commercial vineyard. Ciência Rural 47(12):e20160827.
  • Villar P, Aran M. 2008. Guia d’interpretació d’anàlisis de sòls i plantes. Lleida: Generalitat de Catalunya, Departament d’Agricultura, Alimentació i Acció Rural, Consell Cátala de Producció Integrada. 78 p.
  • Welch EW, Powell C, Bextine B. 2015. Adult Age Structure and Trends in Xylella fastidiosa Incidence in Homalodisca vitripennis (Hemiptera: Cicadellidae) from Texas Grape Vineyards. Southwestern Entomologist 40(4):753-763.
  • Wells RB. 2011. Investigations into the relationships of stress and leaf health of the grapevine (Vitis vinifera L.) on grape and wine qualities. Doctoral dissertation. University of Tasmania.
  • WRB. 2006. World Reference Base for Soil Resources 2006. Rome: FAO.
  • Zarco-Tejada PJ, Berjón A, López-Lozano R, Miller JR, Martín P, Cachorro V, De Frutos A. 2005. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment 99(3):271-287.
  • Zhang Y, Oren R, Kang S. 2012. Spatiotemporal variation of crown-scale stomatal conductance in an arid Vitis vinifera L. cv. Merlot vineyard: direct effects of hydraulic properties and indirect effects of canopy leaf area. Tree physiology 32(3):262-279.
  • Zhao Z, Chu C, Zhou D, Sha Z, Wu S. 2019. Soil nutrient status and the relation with planting area, planting age and grape varieties in urban vineyards in Shanghai. Heliyon 5(8):e02362.
  • Zhao P, Pumpanen J, Kang S. 2020. Spatio-temporal variability and controls of soil respiration in a furrow-irrigated vineyard. Soil and Tillage Research 196:104424.