Evolución de la microbiota en un aula de farmacia pre y post primera oleada de la pandemia COVID-19
- Mateos, Pedro F. 1
- Alonso, María 1
- Sánchez-Juanes, Fernando 1
-
1
Universidad de Salamanca
info
ISSN: 2445-1355
Year of publication: 2022
Volume: 7
Issue: 1
Pages: 7-17
Type: Article
More publications in: Farmajournal
Abstract
Microbiota varies over time, therefore during 2019-20 academic year, coinciding with the SARS-COV-2 pandemic, the evolution of it was evaluated in a classroom of the Faculty of Pharmacy of the University of Salamanca with mass spectrometry Matrix-assisted laser desorption ionization time-of-flight. In addition, this study was compared with others, as well as with guidelines of the European Community Commission on indoor air quality. After the study, it was concluded that said classroom had very low contamination degree and that most of microbiota was saprophytic. Furthermore, it can be concluded that quantitatively fungi and quantitatively and qualitatively the bacteria did not present a health risk. On the other hand, the most important variables that were found were the influx of people, the frequency of cleaning and ventilation. Finally, this study shows off the lack of regulation that exists on air quality in non-industrial and non-hospital interiors.
Bibliographic References
- AENOR. UNE 171330-1:2008, Calidad ambiental en interiores. Parte 1: Diagnóstico de Calidad ambiental interior, de julio de 2008; 2008.
- Atlas RM. Handbook of Microbiological Media. 4 th ed. Boca raton: CRC press; 2010.
- BacDive The Bacterial Diversity Metadatabase [Internet]. Alemania; 2015 [citado 19 mar 2021]. Disponible en: https://bacdive.dsmz.de/team.
- BacDive The Bacterial Diversity Metadatabase [Internet]. Streptococcus Sp. 59015 | DSM 20379| BacDiveID:14738. Braunschweig [citado el 19 mar 2021]. Disponible en: https://bacdive.dsmz.de/strain/14738.
- Fariña N, Carpinelli L, Samudio M, Guillén R, Laspina F, Sanabria R et al. Staphylococcus coagulasa-negativa clínicamente significativos. Especies más frecuentes y factores de virulencia. Rev Chil Infectol. 2013; 30(5):480-488.
- Hayleeyesus SF, Manaye AM. Microbiological quality of indoor air in university libraries. Asian Pac J Trop Biomed. 2014; 4th ed (Suppl 1):S312-17.
- Joron C, Roméo B, Le Flèche-Matéos A, Rames C, El Samad Y, Hamdad F. Dermacoccus nishinomiyaensis as a cause of persistent paediatric catheter-related bacteraemia. Clin Microbiol Infect. 2019; 25(8):1054-1055.
- Meadow JF, Altrichter AE, Kembel SW, Kline J, Mhuireach G, Moriyama M et al. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air. 2014; 24(1):41-48.
- P?kala A, Pa?dzior E, Antychowicz J, Bernad A, G?owacka H, Wi?cek B et al. Kocuria rhizophila and Micrococcus luteus as emerging opportunist pathogens in brown trout (Salmo trutta Linnaeus, 1758) and rainbow trout (Oncorhynchus mykiss Walbaum, 1792). Aquaculture. 2018; 486:285-289.
- Real Decreto 664/1997, de 12 de mayo, sobre la protección de los trabajadores contra los riesgos relacionados con la exposición a agentes biológicos durante el trabajo. Boletín Oficial del Estado, n.o 124, de 24 de mayo de 1997.
- Reimer L, Vetcininova A, Sardà Carbasse J, Söhngen C, Gleim D, Ebeling C et al. BacDive in 2019: bacterial phenotypic data for High-throughput biodiversity analysis. Nucleic Acids Research. 2019; 47(D1):D631-36.
- Soto Pino T, García Murcia R, Franco Sánchez A, Vicente Soler M, Cansado Vizoso J, Gacto Fernández M. Indoor airborne microbial load in a Spanish University (University of Murcia, Spain). Anales de Biología. 2009; 31(31):109-115.
- Universidad de Salamanca. Instrucciones de ventilación y climatización de espacios para evitar la propagación del SARS-COV-2; 2020.
- Wanner H-U, Gravesen S. Biological Particles in Indoor Environment. Report 12. Commission of the European Communities. Luxembourg; 1993.