Interconnection architecture of proximity smart IOE-networks with centralised management

  1. González Ramírez, Pedro Luis
Dirigida por:
  1. Jesús Tomás Gironés Director/a
  2. Jaime Lloret Mauri Director/a

Universidad de defensa: Universitat Politècnica de València

Fecha de defensa: 07 de marzo de 2022

Tribunal:
  1. Javier M. Aguiar Pérez Presidente
  2. José Oscar Romero Martínez Secretario/a
  3. Christos Verikoukis Vocal

Tipo: Tesis

Resumen

Interoperability between communicating objects is the main goal of the Internet of Things (IoT). Efforts to achieve this have generated several architectures' proposals; however, no consensus has yet been reached. These architectures differ in structure, degree of centralisation, routing algorithm, routing metrics, discovery techniques, search algorithms, segmentation, quality of service, and security. Some are better than others depending on the environment in which they perform, and the type of parameter used. The most popular are those oriented to events or actions based on rules, which has allowed them to enter the market and achieve rapid massification. However, their interoperability is based on alliances between manufacturers to achieve compatibility. This solution is achieved in the cloud with a dashboard that unifies the different allied brands, allowing the introduction of these technologies into users' everyday lives but does not solve problems of autonomy or interoperability. Moreover, it does not include the new generation of smart grids based on smart things. The architecture proposed in this thesis takes the most relevant aspects of the four most accepted IoT-Architectures and integrates them into one, separating the IoT layer (commonly present in these architectures) into three layers. It is also intended to cover proximity networks (integrating different IoT interconnection technologies) and base its operation on artificial intelligence (AI). Therefore, this proposal increases the possibility of achieving the expected interoperability and increases the functionality of each object in the network focused on providing a service to the user. Although the proposed system includes artificial intelligence processing, it follows the same technical aspects as its predecessors since its operation and communication is still based on the application and transport layer of the TCP/IP protocol stack. However, in order to take advantage of IoT-Protocols without modifying their operation, an additional protocol is created that encapsulates and adapts to its payload. This protocol discovers the features of an object (DFSP) divided into functions, services, capabilities, and resources, and extracts them to be centralised in the network manager (IoT-Gateway). With this information, the IoT-Gateway can make decisions such as creating autonomous workgroups that provide a service to the user and routing the objects in this group that provide the service. It also measures the quality of experience (QoE) of the service. Moreover, manages internet access and integrates with other IoT-Networks, using artificial intelligence in the cloud. This proposal is based on a new hierarchical system for interconnecting objects of different types controlled by AI with centralised management, reducing the fault tolerance and security, and improving data processing. Data is preprocessed on three levels depending on the type of service and sent through an interface. However, if it is data about its features, it does not require much processing, so each object preprocesses it independently, structures it and sends it to the central administration. The IoT-Network based on this architecture can classify a new object arriving on the network in a workgroup without user intervention. It also can provide a service that requires high processing (e.g., multimedia), and user tracking in other IoT-Networks through the cloud.