Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions

  1. Valverde, Angel 1
  2. Burgos, Araceli 4
  3. Fiscella, Tiziana 13
  4. Rivas, Raúl 2
  5. Velázquez, Encarna 2
  6. Rodríguez-Barrueco, Claudino 1
  7. Cervantes, Emilio 1
  8. Chamber, Manuel 4
  9. Igual, José-Mariano 1
  1. 1 Instituto de Recursos Naturales y Agrobiología de Salamanca
    info

    Instituto de Recursos Naturales y Agrobiología de Salamanca

    Salamanca, España

    ROR https://ror.org/051p0fy59

  2. 2 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

  3. 3 University of Catania
    info

    University of Catania

    Catania, Italia

    ROR https://ror.org/03a64bh57

  4. 4 CIFA Las Torres-Tomejil, 41200, Alcalá del Rio, Sevilla, Spain
Actas:
First International Meeting on Microbial Phosphate Solubilization
  1. E. Velázquez (coord.)
  2. C. Rodríguez-Barrueco (coord.)

Editorial: Springer Dordrecht

ISBN: 978-1-4020-4019-1 978-90-481-7013-5 978-1-4020-5765-6

Año de publicación: 2007

Páginas: 43-50

Congreso: First International Meeting on Microbial Phosphate Solubilization,Salamanca, Spain, July 16–19, 2002

Tipo: Aportación congreso

DOI: 10.1007/978-1-4020-5765-6_5 GOOGLE SCHOLAR

Resumen

In the course of a project carried out in two regions of Spain, Castilla y León and Andalucía, aiming to find useful biofertilizers for staple grain-legumes, an efficient rhizobia nodulating chickpea (termed as C-2/2) and a powerful in vitro phosphate-solubilizing bacterial strain (termed as PS06) were isolated. Analyses of their 16S rDNA sequence indicated that they belong to the bacterial species Mesorhizobium ciceri and Pseudomonas jessenii, respectively. Greenhouse and field experiments were carried out in order to test the effect of single and dual inoculations on chickpea (ecotype ILC-482) growth. Under greenhouse conditions, plants inoculated with Mesorhizobium ciceri C-2/2 alone had the highest shoot dry weight. The inoculation treatment with P. jessenii PS06 yielded a shoot dry weight 14% greater than the uninoculated control treatment, but it was not correlated with shoot P contents. However, the co-inoculation of C-2/2 with PS06 resulted in a decrease in shoot dry weight with respect to the inoculation with C-2/2 alone. Under field conditions, plants inoculated with M. ciceri C-2/2, in single or dual inoculation, produced higher nodule fresh weight, nodule number and shoot N content than the other treatments. Inoculation with P. jessenii PS06 had no significant effect on plant growth. However, the co-inoculation treatment ranked the highest in seed yield (52% greater than the uninoculated control treatment) and nodule fresh weight. These data suggest that P. jessenii PS06 can act synergistically with M. ciceri C-2/2 in promoting chickpea growth. The contrasting results obtained between greenhouse and field experiments are discussed.

Referencias bibliográficas

  • Alagawadi A R and Gaur A C 1992 Inoculation of Azospirillum brasilense and phosphate-solubilizing bacteria on yield of sorghum [Sorghum bicolor (L.) Moench] in dry land. Trop. Agric. 69, 347–350.
  • Antoun H, Beauchamp C J, Goussard N, Chabot R and Lalande R 1998 Potential of Rhizobium and Bradyrhizobium species as growth promoting bacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204, 57–67.
  • Belimov A A, Kojemiakov A P and Chuvarliyeva C V 1995 Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria. Plant Soil 173, 29–37.
  • Bergersen F J 1961 The growth of Rhizobium in synthetic media. Aust. J. Biol. Sci. 14, 349–360.
  • Bolton H, Elliot L F, Turco R F and Kennedy A C 1990 Rhizoplane colonization of pea seedlings by Rhizobium leguminosarum and a deleterious root colonizing Pseudomonas sp. and effects on plant growth. Plant Soil 123, 121–124.
  • Chabot R, Antoun H and Cescas M P 1993 Growth stimulation of corn and romiane lettuce by microorganisms solubilizing inorganic phosphorous. Can. J. Microbiol. 39, 941–947.
  • Chabot R, Antoun H and Cescas M P 1996 Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Plant Soil 184, 311–321.
  • Chabot R, Beauchamp C J, Kloepper J W and Antoun H 1998 Effect of phosphorous on root colonization and growth promotion of maize by bioluminescent mutants of phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli. Soil Biol. Biochem. 30, 1615–1618.
  • Dashti N, Zhang F, Hynes R and Smith D L 1998 Plant growth-promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions. Plant Soil 200, 205–213.
  • Davison J 1988 Plant beneficial bacteria. Biotechnology 6, 282–286.
  • de Freitas J R, Banerjee M R and Germida J J 1997 Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorous uptake in canola (Brassica napus L.). Biol. Fertil. Soils 24, 358–364.
  • Glick B R 1995 The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41, 109–117.
  • Gupta R, Singal R, Sankar A, Chander R M and Kumar R S 1994 A modified plate assay for screening phosphate solubilizing microorganisms. J. Gen. Appl. Microbiol. 40, 255–260.
  • Halder A K, Mishra A K, Bhattacharyya P and Chakrabartty P K 1990 Solubilization of rock phosphate by Rhizhobium and Bradyrhizobium. J. Gen. Appl. Microbiol. 36, 81–92.
  • Hirsch A M, Fang Y, Asad S and Kapulnik Y 1997 The role of phytohormones in plant-microbe symbioses. Plant Soil 194, 171–184.
  • Höfte M, Boelens J and Verstraete W 1991 Seed protection and promotion of seedling emergence by the plant growth beneficial Pseudomonas strains 7NSK2 and ANP15. Soil Biol. Biochem. 23, 407–410.
  • Igual J M, Valverde A, Cervantes E and Velázquez E 2001 Phosphate-solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study. Agronomie 21, 561–568.
  • Illmer P and Schinner F 1992 Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol. Biochem. 24, 389–395.
  • Kim K Y, Jordan D and McDonald G A 1998 Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol. Fertil. Soils 26, 79–87.
  • Kloepper J W and Schroth M N 1978 Plant growth-promoting rhizobacteria on radishes. In Proceedings of the IV International Conference on Plant Pathogenic Bacteria, vol. 2. Eds. Gibert-Clarey and Tours. pp. 879–882. Station de Phatologie Végétale et Phytobactériologie, INRA, Angers, France.
  • Kundu B S and Gaur A C 1984 Rice response to inoculation with N2-fixing and P-solubilizing microorganisms. Plant Soil 79, 227–234.
  • Liljeroth E, Bååth E, Mathiasson I and Lundborg T 1990a Root exudation and rhizoplane bacterial abundance of barley (Hordeum vulgare L) in relation to nitrogen fertilization and root growth. Plant Soil 127, 81–89.
  • Liljeroth E, Van Veen J A and Miller H J 1990b Assimilate translocation to the rhizosphere of two wheat lines and subsequent utilization by rhizosphere microorganisms at two nitrogen concentrations. Soil Biol. Biochem. 22, 1015–1021.
  • Marschner P, Gerendás J and Sattelmacher B 1999 Effect of N concentration and N source on root colonization by Pseudomonas fluorescens 2-79RLI. Plant Soil 215, 135–141.
  • McLaughlin M J, Alston A M and Martin J K 1988 Phosphorus cycling in wheat-pasture rotations II The role of the microbial biomass in phosphorus cycling. Aust. J. Soil Res. 26, 333–342.
  • Oberson A, Friesen D K, Rao I M, Bühler S and Frossard E 2001 Phosphorus transformations in an Oxisol under contrasting land-use systems: The role of the soil microbial biomass. Plant Soil 237, 197–210.
  • Oehl F, Oberson A, Probst M, Fliessbach A, Roth H R and Frossard E 2001 Kinetics of microbial phosphorus uptake in cultivated soils. Biol. Fertil. Soils 34, 31–41.
  • O’Sullivan D J and O’Gara F 1992 Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev. 56, 662–676.
  • Pal S S 1998 Interaction of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 198, 169–177.
  • Pearson W R and Lipman D J 1988 Search for DNA homologies was performed with the FASTA program. Proc. Natl. Acad. Sci. USA 85, 2444–2448.
  • Peix A, Rivas-Boyero A A, Mateos P F, Rodríguez-Barrueco C, Martínez-Molina E and Velázquez E 2001a Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol. Biochem. 33, 103–110.
  • Peix A, Mateos P F, Rodríguez-Barrueco C, Martínez-Molina E and Velázquez E 2001b Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions. Soil Biol. Biochem. 33, 1927–1935.
  • Persello-Cartieaux F, Nussaume L and Robaglia C 2003 Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ. 26, 189–199.
  • Piccini D and Azcón R 1987 Effect of phosphate-solubilizing bacteria and vesicular arbuscular mycorrhizal (VAM) on the utilization of bayoran rock phosphate by alfalfa plants using a sand-vermiculite medium. Plant Soil 101, 45–50.
  • Ray J, Bagyaraj D J and Manjunath A 1981 Influence of soil inoculation with versicular arbuscular mycorrhizal (VAM) and a phosphate dissolving bacteria on plant growth and 32P uptake. Soil Biol. Biochem. 13, 105–108.
  • Rigaud J and Puppo A 1975 Indole-3-acetic catabolism by soybean bacteroids. J. Gen. Microbiol. 88, 223–228.
  • Rivas R, Velázquez E, Valverde A, Mateos P F and Martínez-Molina E 2001 A two primers random amplified polymorphic DNA procedure to obtain polymerase chain reaction fingerprints of bacterial species. Electrophoresis 22, 1086–1089.
  • Rodríguez H and Fraga R 1999 Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17, 319–339.
  • Sarawgi S K, Tiwari P K and Tripathi R S 1999 Uptake and balance sheet of nitrogen and phosphorus in gram (Cicer arietinum) as influenced by phosphorus, biofertilizers and micronutrients under rainfed condition. Indian J. Agron. 44, 768–772.
  • Schmelz E A, Engelberth J, Alborn H T, O’Donnell P, Sammons M, Toshima H and Tumlinson J H III 2003 Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc. Natl. Acad. Sci. USA 100, 10552–10557.
  • Seong K Y, Hofte M, Boelens J and Verstraete W 1991 Growth, survival and root colonization of plant growth beneficial Pseudomonas fluorescens ANP15 and Pseudomonas aeruginosa 7NSK2 at different temperatures. Soil Biol. Biochem. 23, 423–428.
  • Sindhu S S, Gupta S K and Dadarwal K R 1999 Antagonistic effect of Pseudomonas spp. on pathogenic fungi and enhancement of growth of green gram (Vigna radiata). Biol. Fertil. Soils 29, 62–68.
  • Sindhu S S, Suneja S, Goel A K, Parma N and Dadarwal K R 2002 Plant growth promotion effects of Pseudomonas sp. on coinoculation with Mesorhizobium sp. Cicer strain under sterile and “wilt sick”’ soil conditions. Appl. Soil Ecol. 19, 57–64
  • Snedecor G W and Cochran W G 1989 Statistical Methods. Iowa State University Press, Ames, Iowa 503 pp.
  • Subba Rao N S 1993 Biofertilizers in Agriculture and Forestry. Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi 242 pp.
  • Tan K H 1996 Soil Sampling, Preparation, and Analysis. Marcel Dekker, Inc, New York 408 pp.
  • Thompson J D, Gibson T J, Plewniak F, Jeanmougin F and Higgins D G 1997 The clustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res. 24, 4876–4882.
  • Tomar R K S, Namdeo K N and Ranghu J S 1996 Efficacy of phosphate solubilizing bacteria biofertilizers with phosphorus on growth and yield of gram (Cicer arietinum). Indian J. Agron. 41, 412–415.
  • Toro N, Azcón R and Barea J M 1997 Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl. Environ. Microbiol. 63, 4408–4412.
  • Toro N, Azcón R and Barea JM 1998 The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. New Phytol. 138, 265–273.
  • Umrit G and Friesen D K 1994 The effect of C:P ratio of plant residues added to soils of contrasting phosphate sorption capacities on P uptake by Panicum maximum (Jacq.). Plant Soil 158, 275–285.
  • Vincent J M 1970 The cultivation, isolation and maintenance of rhizobia. In A Manual for the Practical Study of Root-Nodule. Ed. J M Vincent. pp. 1–13. Blackwell Scientific Publications, Oxford.