Emission of gravitational radiation in scalar-tensor and f(R)-theories

  1. Laurentis, Mariafelicia De 2
  2. Martino, Ivan De 1
  1. 1 Universidad de Salamanca, Departamento de Física Fundamental, Salamanca, Spain
  2. 2 Dipartimento di Fisica, Università di Napoli “Federico II”, Compl. Univ. di Monte S. Angelo, Napoli, Italy
Livre:
Handbook of Gravitational Wave Astronomy

ISBN: 9789811547027

Année de publication: 2021

Pages: 1-38

Type: Chapitre d'ouvrage

DOI: 10.1007/978-981-15-4702-7_40-1 GOOGLE SCHOLAR

Résumé

The recent detections of gravitational waves by the advanced LIGO and Virgo detectors open a formidable way to set constraints on alternative metric theories of gravity in the strong field regime. Such tests rely sensitively on the phase evolution of the gravitational waves, which is controlled by the energy momentum carried by such waves out of the system. The weak-field limit of alternative metric theories shows new aspects of gravitation which are not present in general relativity and exhibits new gravitational field modes which can easily be interpreted as massive gravitons. The study of the generation, propagation, and detection of gravitational waves in the weak-field limit of a given relativistic theory of gravity is an important part of astrophysics.

Références bibliographiques

  • Abbott BP et al (2016) GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys Rev Lett 116(24):241103
  • Abbott BP et al (2016) Binary black hole mergers in the first advanced LIGO observing run. Phys Rev X 6(4):041015. [Erratum: Phys.Rev.X 8, 039903 (2018)]
  • Abbott BP et al (2016) Properties of the binary black hole merger GW150914. Phys Rev Lett 116(24):241102
  • Abbott BP et al (2016) Tests of general relativity with GW150914. Phys Rev Lett 116(22):221101. [Erratum: Phys.Rev.Lett. 121, 129902 (2018)]
  • Amendola L and Euclid Theory Working Group (2013) Cosmology and fundamental physics with the Euclid satellite. Living Rev Relativ 16(6)
  • Amendola L, Tsujikawa S (2008) Phantom crossing, equation-of-state singularities, and local gravity constraints in f(r) models. Phys Lett B 660(3):125–132
  • Antoniadis J, Freire PCC, Wex N, Tauris TM, Lynch RS, van Kerkwijk MH, Kramer M, Bassa C, Dhillon VS, Driebe T et al (2013) A massive pulsar in a compact relativistic binary. Science 340(6131):1233232–1233232
  • Arun KG, Iyer BR, Qusailah MSS, Sathyaprakash BS (2006) Probing the non-linear structure of general relativity with black hole binaries. Phys Rev D 74:024006
  • Barrow JD, Ottewill AC (1983) The stability of general relativistic cosmological theory. J Phys A Math Gen 16(12):2757–2776
  • Bekenstein JD (1973) Gravitational-radiation recoil and runaway black holes. Astrophys J 183:657–664
  • Bertone G, Hooper D (2018) History of dark matter. Rev Mod Phys 90(4):045002
  • Bertone G, Hooper D, Silk J (2005) Particle dark matter: evidence, candidates and constraints. Phys Rep 405(5–6):279–390
  • Blanchet L, Damour T, Iyer BR Gravitational waves from inspiralling compact binaries: energy loss and wave form to second postNewtonian order. Phys Rev D 51:5360 (1995) [Erratum: Phys.Rev.D 54, 1860 (1996)]
  • Blanchet L, Sathyaprakash BS (1994) Signal analysis of gravitational wave tails. Class Quantum Grav 11(11):2807–2831
  • Bogdanos C, Capozziello S, De Laurentis M, Nesseris S (2010) Massive, massless and ghost modes of gravitational waves from higher-order gravity. Astropart Phys 34(4):236–244
  • Brans C, Dicke RH (1961) Mach’s principle and a relativistic theory of gravitation. Phys Rev 124:925–935
  • Buonanno A, Iyer B, Ochsner E, Pan Y, Sathyaprakash BS (2009) Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors. Phys Rev D 80:084043
  • Capozziello S, Cardone VF, Troisi A (2007) Low surface brightness galaxy rotation curves in the low energy limit of rn gravity: no need for dark matter? Mon Not R Astron Soc 375(4):1423–1440
  • Capozziello S, De Laurentis M (2011) Extended theories of gravity. Phys Rep 509(4–5):167–321
  • Capozziello S, De Laurentis M (2012) The dark matter problem from f(R) gravity viewpoint. Ann Phys 524(9–10):545–578
  • Capozziello S, De Laurentis M, Nojiri S, Odintsov SD (2009) f(r) gravity constrained by ppn parameters and stochastic background of gravitational waves. Gen Relativ Gravit 41(10):2313–2344
  • Capozziello S, Troisi A (2005) PPN-limit of fourth order gravity inspired by scalar-tensor gravity. Phys Rev D 72:044022
  • Capozziello S, Vignolo S (2009) The cauchy problem for metric-affine f(r)-gravity in the presence of perfect-fluid matter. Class Quantum Grav 26(17):175013
  • Capozziello S, Corda C, De Laurentis M (2007) Stochastic background of relic scalar gravitational waves from scalar-tensor gravity. Mod Phys Lett A 22:2647–2655
  • Chandrasekhar S (1985) The mathematical theory of black holes. Springer
  • Coleman Miller M (2016) Implications of the gravitational wave event GW150914. Gen Rel Grav 48(7):95
  • Damour T, Esposito-Farèse G (1998) Gravitational-wave versus binary-pulsar tests of strong-field gravity. Phys Rev D 58(4):042001
  • de Felice A, Tsujikawa S (2010) f(R) theories. Living Rev Relativ 13:3
  • De Laurentis M, Capozziello S (2011) Quadrupolar gravitational radiation as a test-bed for f(r)-gravity. Astropart Phys 35(5):257–265
  • De Laurentis M, De Martino I (2013) Testing f (R) theories using the first time derivative of the orbital period of the binary pulsars. Mon Not R Astron Soc 431(1):741–748
  • de Laurentis M, de Martino I (2015) Probing the physical and mathematical structure of f(R)-gravity by PSR J0348 + 0432. Int J Geom Meth Mod Phys 12(4):1550040
  • De Laurentis M, De Martino I, Lazkoz R (2018) Analysis of the Yukawa gravitational potential in f (R ) gravity. II. Relativistic periastron advance. Phys Rev D 97(10):104068
  • De Laurentis M, De Martino I, Lazkoz R Modified gravity revealed along geodesic tracks. Eur Phys J C 78(11):916 (2018)
  • De Laurentis M, Capozziello S (2009) Stochastic background of relic scalar gravitational waves tuned by extended gravity. Nucl Phys B Proc Suppl 194:212–217 New Horizons for Modern Cosmology
  • De Laurentis M, Porth O, Bovard L, Ahmedov B, Abdujabbarov A (2016) Constraining alternative theories of gravity using GW150914 and GW151226. Phys Rev D 94(12):124038
  • Dvali G, Gabadadze G, Porrati M (2000) 4d gravity on a brane in 5d Minkowski space. Phys Lett B 485(1–3):208–214
  • Eardley DM, Lee DL, Lightman AP (1973) Gravitational-wave observations as a tool for testing relativistic gravity. Phys Rev D 8:3308–3321
  • Eardley DM, Lee DL, Lightman AP, Wagoner RV, Will CM (1973) Gravitational-wave observations as a tool for testing relativistic gravity. Phys Rev Lett 30:884–886
  • Eddington AS (1924) The mathematical theory of relativity. Cambridge University Press, London
  • Faraoni V (2005) Phantom cosmology with general potentials. Class Quantum Grav 22(16):3235–3246
  • Feng JL (2010) Dark matter candidates from particle physics and methods of detection. Annu Rev Astron Astrophys 48:495–545
  • Fierz M (1956) On the physical interpretation of P.Jordan’s extended theory of gravitation. Helv Phys Acta 29:128–134
  • Finn LS, Sutton PJ (1993) Observing binary inspiral in gravitational radiation: one interferometer. Phys Rev D 47:2198–2219
  • Hinterbichler K, Khoury J (2010) Screening long-range forces through local symmetry restoration. Phys Rev Lett 104:231301
  • Hu W, Sawicki I (2007) Models of f(r) cosmic acceleration that evade solar system tests. Phys Rev D 76:064004
  • Hulse RA, Taylor JH (1975) Discovery of a pulsar in a binary system. Astrophys J Lett 195:L51–L53
  • Husa S, Khan S, Hannam M, Pürrer M, Ohme F, Jiménez Forteza X, Bohé A (2016) Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal. Phys Rev D 93(4):044006
  • Isaacson RA (1968) Gravitational radiation in the limit of high frequency. I. The linear approximation and geometrical optics. Phys Rev 166:1263–1271
  • Isaacson RA (1968) Gravitational radiation in the limit of high frequency. II. Nonlinear terms and the effective stress tensor. Phys Rev 166:1272–1279
  • Jacobson T (2007) Einstein-aether gravity: a Status report. PoS QG-PH:020
  • Jacobson T, Mattingly D (2001) Gravity with a dynamical preferred frame. Phys Rev D 64:024028
  • Jordan P (1955) Schwerkraft und Weltall. Friedrich Vieweg and Sohn, Braunschweig
  • Kahya EO, Desai S (2016) Constraints on frequency-dependent violations of Shapiro delay from GW150914. Phys Lett B 756:265–267
  • Kahya EO, Desai S (2016) Constraints on frequency-dependent violations of Shapiro delay from GW150914. Phys Lett B 756:265–267
  • Khoury J, Weltman A (2004) Chameleon fields: awaiting surprises for tests of gravity in space. Phys Rev Lett 93:171104
  • Khoury J, Wyman M (2009) N-body simulations of dgp and degravitation theories. Phys Rev D 80(6):64023
  • Kopeikin SM (1996) Proper motion of binary pulsars as a source of secular variations of orbital parameters. Astrophys J Lett 467:L93
  • Landau LD, Lifshitz EM (1962) The classical theory of fields. Addison-Wesley Publication Co., Inc., Reading
  • Li B, Barrow JD (2007) Cosmology of f(r) gravity in the metric variational approach. Phys Rev D 75:084010
  • Li TGF, Del Pozzo W, Vitale S, Van Den Broeck C, Agathos M, Veitch J, Grover K, Sidery T, Sturani R, Vecchio A (2012) Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence. Phys Rev D 85:082003
  • Maggiore M (2007) Gravitational waves: theory and experiments. Oxford University Press
  • Miranda V, Jorás SE, Waga I, Quartin M (2009) Viable singularity-free f(r) gravity without a cosmological constant. Phys Rev Lett 102:221101
  • Mirshekari S, Will CM (2013) Compact binary systems in scalar-tensor gravity: equations of motion to 2.5 post-Newtonian order. Phys Rev D 87(8):084070
  • Mishra CK, Arun KG, Iyer BR, Sathyaprakash BS (2010) Parametrized tests of post-Newtonian theory using advanced LIGO and Einstein telescope. Phys Rev D 82:064010
  • Nicolis A, Rattazzi R, Trincherini E (2009) Galileon as a local modification of gravity. Phys Rev D 79:064036
  • Noether E (1971) Invariant variation problems. Transp Theory Stat Phys 1(3):186–207
  • Nojiri S, Odintsov SD, Tsujikawa S (2005) Properties of singularities in the (phantom) dark energy universe. Phys Rev D 71(6):063004
  • Weyl H, Pauli W (1919) Zur Theorie der Gravitation und der Elektrizität. Phys Z 20:457–467
  • Poisson E, Will CM (2014) Gravity: Newtonian, Post-Newtonian, relativistic. Cambridge University Press
  • Primack JR (2012) Triumphs and tribulations of ΛCDM, the double dark theory. Ann Phys 524(9–10):535–544
  • Rubano C, Scudellaro P (2005) Variable G and Λ: scalar-tensor versus RG-improved cosmology. Gen Relativ Gravit 37(3):521–539
  • Saffer A, Yunes N, Yagi K (2018) The gravitational wave stress–energy (pseudo)-tensor in modified gravity. Class Quant Grav 35(5):055011
  • Shklovskii IS (1970) Possible causes of the secular increase in pulsar periods. Sov Astron 13:562
  • Sotiriou TP (2006) f(R) gravity and scalar-tensor theory. Class Quant Grav 23:5117–5128
  • Sotiriou TP, Faraoni V (2010) f(R) theories of gravity. Rev Mod Phys 82:451–497
  • Stairs IH (2004) Pulsars in binary systems: probing binary stellar evolution and general relativity. Science 304(5670):547–552
  • Stairs IH (2003) Testing general relativity with pulsar timing. Living Rev Relativ 6(1):1–49
  • Starobinsky AA (1980) A new type of isotropic cosmological models without singularity. Phys Lett B 91:99
  • Starobinsky AA (2007) Disappearing cosmological constant in f(r) gravity. JETP Lett 86:157
  • Uzan J-P (2003) The fundamental constants and their variation: observational and theoretical status. Rev Mod Phys 75:403–455
  • van Dam H, Veltman MJG (1970) Massive and massless Yang-Mills and gravitational fields. Nucl Phys B 22:397–411
  • Wagoner RV (1970) Scalar tensor theory and gravitational waves. Phys Rev D 1:3209–3216
  • Wei J-J, Gao H, Wu X-F, Mészáros P (2015) Testing Einstein’s equivalence principle with fast radio bursts. Phys Rev Lett 115(26):261101
  • Weinberg S (1972) Gravitation and cosmology. Wiley, New York
  • Weisberg JM, Huang Y (2016) Relativistic measurements from timing the binary pulsar PSR B1913+16. Astrophys J 829(1):55
  • Weisberg JM, Nice DJ, Taylor JH (2010) Timing measurements of the relativistic binary pulsar psr b1913+16. Astrophys J 722(2):1030–1034
  • Weisberg JM, Taylor JH (2002) Radio pulsars. M. Bailes
  • Weyl H (1918) Math Zeit 2:384, https://doi.org/10.1007/BF01199420
  • Will CM (2018) Theory and experiment in gravitational physics, 2 edn. Cambridge University Press
  • Wu X-F, Gao H, Wei J-J, Mészáros P, Zhang B, Dai Z-G, Zhang S-N, Zhu Z-H (2016) Testing Einstein’s weak equivalence principle with gravitational waves. Phys Rev D 94:024061
  • Yunes N, Pretorius F (2009) Fundamental theoretical bias in gravitational wave astrophysics and the parameterized post-Einsteinian framework. Phys Rev D 80:122003