Gemelos Digitales en la Industria de Procesos

  1. de Prada, César 1
  2. Galán-Casado, Santos
  3. Pitarch, Jose L.
  4. Sarabia, Daniel
  5. Galán, Anibal
  6. Gutiérrez, Gloria
  1. 1 Universidad de Valladolid
    info

    Universidad de Valladolid

    Valladolid, España

    ROR https://ror.org/01fvbaw18

Revista:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Año de publicación: 2022

Volumen: 19

Número: 3

Páginas: 285-296

Tipo: Artículo

DOI: 10.4995/RIAI.2022.16901 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista iberoamericana de automática e informática industrial ( RIAI )

Objetivos de desarrollo sostenible

Resumen

Digital Twins are virtual plants with an architecture and functionalities that make them actual useful tools for improving many aspects related to process operation, from its control to optimization. Nevertheless, there are several open problems that demand additional research before Digital Twins can be used in real-time as useful tools in decision making. Among them we can cite those related to model updating in real-time and the explicit consideration of uncertainty in models and processes. This paper discusses its architecture and role in the context of Industry 4.0 and, at the same time, analyzes one case study referred to the hydrogen network of an oil refinery that illustrates the possibilities of industrial use of digital twins, as well as the open problems associated to its implementation in the process industry.

Información de financiación

Financiadores

Referencias bibliográficas

  • Allgöwer, F., Badgwell, T.A., Qin, J.S., Rawlings, J.B., Wright, S.J. 1999. Nonlinear Predictive Control and Moving Horizon Estimation "" An In-troductory Overview BT. In: Frank, P.M. (Ed.), Advances in Control. Springer London, London, pp. 391-449. DOI: 10.1007/978-1-4471-0853-5_19 https://doi.org/10.1007/978-1-4471-0853-5_19
  • Arora, N., Biegler, L.T., 2001. Redescending estimators for data reconcilia-tion and parameter estimation. Comput. Chem. Eng. 25, 1585-1599. https://doi.org/10.1016/S0098-1354(01)00721-9
  • Aveva, 2020. Enabling the Digital Twin through Unified Engineering [WWW Document]. Blog. URL: https://www.aveva.com/en/perspectives/blog/enabling-the-digital-twin-through-unified-engineering/ (accedido 2.7.22).
  • Bernardo, J. M., 2011. Modern Bayesian Inference: Foundations and Objec-tive Methods. In: Bandyopadhyay, P. S. et al. (Ed.) Handbook of the Phi-losophy of Science, Philosophy of Statistics, North-Holland, 7, pp 263-306. DOI: 10.1016/B978-0-444-51862-0.50008-3 https://doi.org/10.1016/B978-0-444-51862-0.50008-3
  • Birge, J. R., Louveaux, F., 2011. Introduction to stochastic Programming. Springer Verlag, Springer Series in Operations Research and Financial Engineering. https://doi.org/10.1007/978-1-4614-0237-4
  • Boss, B., Malakuti, S., Lin, S.W., Usländer, T., Clauer, E., Hoffmeister, M., Stojanovic, L., 2020. Digital Twin and Asset Administration Shell Con-cepts and Application in the Industrial Internet and Industrie 4.0. URL https://www.plattform-i40.de/IP/Navigation/EN/Home/home.html
  • Bröcker, S., Benfer, R., Bortz, M., Engell, S., Knösche, C., Kröner, A., 2021. Process Simulation - Fit for the future? DECHEMA e.V.
  • Darby, M. L., Nikolaou, M., Jones, J., Nicholson, D., 2011. RTO: An over-view and assessment of current practice. Journal of Process Control, 21, 874-884. DOI: 10.1016/j.jprocont.2011.03.009 https://doi.org/10.1016/j.jprocont.2011.03.009
  • de Prada, C., Sarabia, D., Gutierrez G., Gomez, E., Marmol, S., Sola, M., Pascual, C., Gonzalez, R., 2017. Integration of RTO and MPC in the hydrogen network of a petrol refinery. Processes, 5(3). DOI: 10.3390/pr5010003 https://doi.org/10.3390/pr5010003
  • del Rio Chanona, E. A., Petsagkourakis, P., Bradford, E., Graciano, J. A., & Chachuat, B., 2021. Real-time optimization meets Bayesian optimization and derivative-free optimization: A tale of modifier adaptation. Computers & Chemical Eng., 147, 107249. DOI:0.1016/j.compchemeng.2021.107249 https://doi.org/10.1016/j.compchemeng.2021.107249
  • Engell, S., Harjunkoski, I., 2012. Optimal operation: Scheduling, advanced control and their integration. Computers & Chemical Engineering, 47, 121-133. DOI: 10.1016/j.compchemeng.2012.06.039 https://doi.org/10.1016/j.compchemeng.2012.06.039
  • Fracaro, S. G., Glassey, J., Bernaerts, K., Wilk, M., 2022. Immersive technologies for the training of operators in the process industry: A Systematic Literature Review. Computers & Chemical Engineering, 107691. https://doi.org/10.1016/j.compchemeng.2022.107691
  • Galán, A.S., 2021. Simulation and optimization methods as decision support tools for operation of oil refinery hydrogen networks. Tesis Doctoral, Universidad de Valladolid. DOI: 10.35376/10324/46435 https://doi.org/10.35376/10324/46435
  • Galan, A., de Prada, C., Gutierrez, G., Sarabia, D., Gonzalez, R., 2019. Predictive Simulation Applied to Refinery Hydrogen Networks for Oper-ators' Decision Support. IFAC"Papers On Line 52, 862-867. DOI: 10.1016/j.ifacol.2019.06.170 https://doi.org/10.1016/j.ifacol.2019.06.170
  • Galan, A., de Prada, C., Gutierrez, G., Sarabia, D., Gonzalez, R., 2021, Real-time reconciled simulation as decision support tool for process operation. Journal of Process Control, 100, 41-64. DOI: 10.1016/j.jprocont.2021.02.003 https://doi.org/10.1016/j.jprocont.2021.02.003
  • Ge, Z., Song, Z., Ding, S. X., Huang, B., 2017. Data mining and analytics in the process industry: The role of machine learning. IEEE Access, 5, 20590-20616. DOI: 10.1109/ACCESS.2017.2756872 https://doi.org/10.1109/ACCESS.2017.2756872
  • Grieves, M., 2019. Virtually Intelligent Product Systems: Digital and physical twins. In: S. Flumerfelt, et al. (Ed.), Complex systems engineering: Theo-ry and Practice. American Institute of Aeronautics and Astronautics, Ch. 7, pp. 175-200. DOI: 10.2514/5.9781624105654.0175.0200 https://doi.org/10.2514/5.9781624105654.0175.0200
  • Jiang, S., Xu, Z., Kamran, M., Zinchik, S., Paheding, S., McDonald, A. G., Bar-Ziv, E., Zavala, V. M., 2021. Using ATR-FTIR spectra and convolu-tional neural networks for characterizing mixed plastic waste. Computers & Chemical Engineering, 155, 107547. DOI: 10.1016/j.compchemeng.2021.107547 https://doi.org/10.1016/j.compchemeng.2021.107547
  • KBC, 2021. Digitalization Manifesto. Now is the Time. URL https://www.kbc.global/uploads/files/whitepapers/KBC%20Digitalization%20Manifesto_US.pdf
  • Lee, J. H., Shin, J., Realff, M. J., 2018. Machine learning: Overview of the recent progresses and implications for the process systems engineering field. Computers & Chemical Engineering, 114, 111-121. DOI: 10.1016/j.compchemeng.2017.10.008 https://doi.org/10.1016/j.compchemeng.2017.10.008
  • Linderoth, L., Wright, S., 2003. Decomposition Algorithms for Stochastic Programming on a Computational Grid. Computational Optimization and Applications, 24. 207-250. DOI: 10.1023/A:1021858008222 https://doi.org/10.1023/A:1021858008222
  • Marchetti, A.G., François, G., Faulwasser, T., Bonvin, D., 2016. Modifier Adaptation for Real-Time Optimization-Methods and Applications. Pro-cesses, 4, 55. DOI: 10.3390/pr4040055 https://doi.org/10.3390/pr4040055
  • Masooleh, L. S., Arbogast, J. E., Seider, W. D., Oktem, U., Soroush, M., 2022. Distributed state estimation in large-scale processes decomposed into observable subsystems using community detection. Computers & Chemical Engineering, 156, 107544. DOI: 10.1016/j.compchemeng.2021.107544 https://doi.org/10.1016/j.compchemeng.2021.107544
  • Mesbah, A., 2018. Stochastic model predictive control with active uncertain-ty learning: A survey on dual control. Annual Reviews in Control, 45, 107-117. DOI: 10.1016/j.arcontrol.2017.11.001 https://doi.org/10.1016/j.arcontrol.2017.11.001
  • Microsoft Corporation, 2020. Azure Digital Twins. URL:https://azure.microsoft.com/es-es/services/digital-twins/#overview (accedido 2.7.22)
  • Oh, T.H., Souza, L.F.S., Lee, J.M., 2021. Applying Digital Application Platform to Optimize Steam Methane Reforming Process, in: 2021 21st Inter. Conf. on Control, Automation and Systems (ICCAS). pp. 388-393. https://doi.org/10.23919/ICCAS52745.2021.9650053
  • Oliveira-Silva, E., de Prada, C., Navia, D., 2021. Dynamic optimization integrating modifier adaptation using transient measurements. Computers & Chemical Engineering, 149, 107282. DOI: 10.1016/j.compchemeng.2021.107282 https://doi.org/10.1016/j.compchemeng.2021.107282
  • Palacín, C. G., Vilas, C., Alonso, A. A., Pitarch, J. L., de Prada, C., 2020. Closed-Loop Scheduling in a Canned Food Factory, 53-2, 10791-10796. In IFAC-PapersOnLine. 21st IFAC World Congress. https://doi.org/10.1016/j.ifacol.2020.12.2863
  • Pfeiffer, B.-M., Oppelt, M., Leingang, C., 2019. Evolution of a Digital Twin for a Steam Cracker, in: 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). pp. 467-474. DOI: 10.1109/ETFA.2019.8869449 https://doi.org/10.1109/ETFA.2019.8869449
  • Pitarch, J. L., Sala, A., de Prada, C., 2019. A systematic grey-box modeling methodology via data reconciliation and SOS constrained regression. Pro-cesses, 7(3), 170. DOI: 10.3390/pr7030170 https://doi.org/10.3390/pr7030170
  • Qin, S., Jin, T., Van Lehn, R. C., Zavala, V. M., 2021. Predicting Critical Micelle Concentrations for Surfactants Using Graph Convolutional Neu-ral Networks. The Journal of Physical Chemistry B, 125(37), 10610-10620. DOI: 10.1021/acs.jpcb.1c05264 https://doi.org/10.1021/acs.jpcb.1c05264
  • Reinbold, P. A., Kageorge, L. M., Schatz, M. F., Grigoriev, R. O., 2021. Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression. Nature communica-tions, 12(1), 1-8. DOI: 10.1038/s41467-021-23479-0 https://doi.org/10.1038/s41467-021-23479-0
  • Sansana, J., Joswiak, M. N., Castillo, I., Wang, Z., Rendall, R., Chiang, L, H., Reis, M. S., 2021. Recent trends on hybrid modeling for Industry 4.0. Computers & Chemical Engineering, 151, 107365. DOI: 10.1016/j.compchemeng.2021.107365 https://doi.org/10.1016/j.compchemeng.2021.107365
  • Sarabia, D., de Prada, C., Gomez, E., Gutierrez, G, Cristea, S., Sola, J.M., Gonzalez, R., 2012. Data reconciliation and optimal management of hy-drogen networks in a petrol refinery. Control Engineering Practice, 20(4), 343-354. DOI: 10.1016/j.conengprac.2011.06.009 https://doi.org/10.1016/j.conengprac.2011.06.009
  • Shafto, M.., Conory, M.., Dolye, R., Glaessgen, E., Kemp, C., LeMoigne J., Wang, L., 2010. DRAFT Modeling, Simulation, Information Technology & Processing Technology Area 11.
  • Smallwood, R. D., Sondik, E. J., 1973. The optimal control of partially observable Markov processes over a finite horizon. Operations research, 21(5), 1071-1088. DOI: 10.1287/opre.21.5.1071 https://doi.org/10.1287/opre.21.5.1071
  • Yokogawa, 2022. Digital Twin. URL: https://www.yokogawa.com/solutions/solutions/digitaltransformation/digital-twin/#Resources__White-Papers (accedido 2.7.22).